These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30839755)

  • 1. A Dunkl type generalization of Szász operators via post-quantum calculus.
    Alotaibi A; Nasiruzzaman M; Mursaleen M
    J Inequal Appl; 2018; 2018(1):287. PubMed ID: 30839755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On modified Dunkl generalization of Szász operators via
    Mursaleen M; Nasiruzzaman M; Alotaibi A
    J Inequal Appl; 2017; 2017(1):38. PubMed ID: 28239243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A generalized Dunkl type modifications of Phillips operators.
    Nasiruzzaman M; Rao N
    J Inequal Appl; 2018; 2018(1):323. PubMed ID: 30839856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The approximation of bivariate Chlodowsky-Szász-Kantorovich-Charlier-type operators.
    Agrawal PN; Baxhaku B; Chauhan R
    J Inequal Appl; 2017; 2017(1):195. PubMed ID: 28890633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new kind of Bernstein-Schurer-Stancu-Kantorovich-type operators based on
    Chauhan R; Ispir N; Agrawal PN
    J Inequal Appl; 2017; 2017(1):50. PubMed ID: 28298874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rate of convergence by Kantorovich-Szász type operators based on Brenke type polynomials.
    Garg T; Agrawal PN; Araci S
    J Inequal Appl; 2017; 2017(1):156. PubMed ID: 28725133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approximation degree of Durrmeyer-Bézier type operators.
    Agrawal PN; Araci S; Bohner M; Lipi K
    J Inequal Appl; 2018; 2018(1):29. PubMed ID: 29503516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Szász-Durrmeyer operators involving Boas-Buck polynomials of blending type.
    Sidharth M; Agrawal PN; Araci S
    J Inequal Appl; 2017; 2017(1):122. PubMed ID: 28603401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bivariate tensor product [Formula: see text]-analogue of Kantorovich-type Bernstein-Stancu-Schurer operators.
    Cai QB; Xu XW; Zhou G
    J Inequal Appl; 2017; 2017(1):284. PubMed ID: 29213195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approximation by
    Kanat K; Sofyalıoğlu M
    J Inequal Appl; 2018; 2018(1):263. PubMed ID: 30363786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On [Formula: see text]-Szász-Mirakyan operators and their approximation properties.
    Mursaleen M; Al-Abied A; Alotaibi A
    J Inequal Appl; 2017; 2017(1):196. PubMed ID: 28904517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized [Formula: see text]-Bleimann-Butzer-Hahn operators and some approximation results.
    Mursaleen M; Nasiruzzaman M; Ansari KJ; Alotaibi A
    J Inequal Appl; 2017; 2017(1):310. PubMed ID: 29290665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative-Voronovskaya and Grüss-Voronovskaya type theorems for Szász-Durrmeyer type operators blended with multiple Appell polynomials.
    Neer T; Agrawal PN
    J Inequal Appl; 2017; 2017(1):244. PubMed ID: 29051691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approximation properties of
    Cai QB; Lian BY; Zhou G
    J Inequal Appl; 2018; 2018(1):61. PubMed ID: 29576718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape-preserving properties of a new family of generalized Bernstein operators.
    Cai QB; Xu XW
    J Inequal Appl; 2018; 2018(1):241. PubMed ID: 30839680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multivariate neural network operators with sigmoidal activation functions.
    Costarelli D; Spigler R
    Neural Netw; 2013 Dec; 48():72-7. PubMed ID: 23973869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blending type approximation by
    Cai QB; Zhou G
    J Inequal Appl; 2018; 2018(1):268. PubMed ID: 30363771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Approximation results for neural network operators activated by sigmoidal functions.
    Costarelli D; Spigler R
    Neural Netw; 2013 Aug; 44():101-6. PubMed ID: 23587719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Approaching Bilinear Multipliers via a Functional Calculus.
    Wróbel B
    J Geom Anal; 2018; 28(4):3048-3080. PubMed ID: 30595640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Bézier variant of Kantorovich type
    Cai QB
    J Inequal Appl; 2018; 2018(1):90. PubMed ID: 29681722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.