BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30839760)

  • 21. Pyrolysis characteristics, kinetics, and evolved gas determination of chrome-tanned sludge by thermogravimetry-Fourier-transform infrared spectroscopy and pyrolysis gas chromatography-mass spectrometry.
    Zhang Z; Xu G; Wang Q; Cui Z; Wang L
    Waste Manag; 2019 Jun; 93():130-137. PubMed ID: 31235049
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal and catalytic slow pyrolysis of Calophyllum inophyllum fruit shell.
    Alagu RM; Sundaram EG; Natarajan E
    Bioresour Technol; 2015 Oct; 193():463-8. PubMed ID: 26162524
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pyrolysis properties and kinetics of photocured waste from photopolymerization-based 3D printing: A TG-FTIR/GC-MS study.
    Sun Y; Zhang H; Zhang F; Tao J; Cheng Z; Yan B; Chen G
    Waste Manag; 2022 Aug; 150():151-160. PubMed ID: 35839750
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation into the co-pyrolysis behaviors of cow manure and coal blending by TG-MS.
    Ma M; Bai Y; Song X; Wang J; Su W; Yao M; Yu G
    Sci Total Environ; 2020 Aug; 728():138828. PubMed ID: 32361111
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential.
    Mishra RK; Mohanty K
    Bioresour Technol; 2020 Sep; 311():123480. PubMed ID: 32413639
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative study on the pyrolysis kinetics of polyurethane foam from waste refrigerators.
    Yao Z; Yu S; Su W; Wu W; Tang J; Qi W
    Waste Manag Res; 2020 Mar; 38(3):271-278. PubMed ID: 31599207
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pyrolysis kinetics of biomass wastes using isoconversional methods and the distributed activation energy model.
    Arenas CN; Navarro MV; Martínez JD
    Bioresour Technol; 2019 Sep; 288():121485. PubMed ID: 31136890
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Co-pyrolysis characteristics of municipal sewage sludge and hazelnut shell by TG-DTG-MS and residue analysis.
    Xu X; Zhao B; Sun M; Chen X; Zhang M; Li H; Xu S
    Waste Manag; 2017 Apr; 62():91-100. PubMed ID: 28236506
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermodynamic Analysis and Pyrolysis Mechanism of 4,4'-Azobis-1,2,4-triazole.
    Qin K; Zhu M; Zhang M; Zhang L; Cheng B; Lin Q
    ACS Omega; 2023 Oct; 8(39):36471-36478. PubMed ID: 37810696
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Correlation of thermal analysis and pyrolysis coupled to GC-MS in the characterization of tacrolimus.
    Böer TM; Procópio JV; Nascimento TG; Macêdo RO
    J Pharm Biomed Anal; 2013 Jan; 73():18-23. PubMed ID: 22361660
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of biopretreatment of corn stover with white-rot fungus on low-temperature pyrolysis products.
    Yang X; Ma F; Yu H; Zhang X; Chen S
    Bioresour Technol; 2011 Feb; 102(3):3498-503. PubMed ID: 21146404
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-distribution activation energy model on slow pyrolysis of cellulose and lignin in TGA/DSC.
    Kristanto J; Azis MM; Purwono S
    Heliyon; 2021 Jul; 7(7):e07669. PubMed ID: 34386629
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic study of solid waste pyrolysis using distributed activation energy model.
    Bhavanam A; Sastry RC
    Bioresour Technol; 2015 Feb; 178():126-131. PubMed ID: 25455087
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetics of coffee industrial residue pyrolysis using distributed activation energy model and components separation of bio-oil by sequencing temperature-raising pyrolysis.
    Chen N; Ren J; Ye Z; Xu Q; Liu J; Sun S
    Bioresour Technol; 2016 Dec; 221():534-540. PubMed ID: 27689350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterizing and optimizing (co-)pyrolysis as a function of different feedstocks, atmospheres, blend ratios, and heating rates.
    Liu J; Huang L; Xie W; Kuo J; Buyukada M; Evrendilek F
    Bioresour Technol; 2019 Apr; 277():104-116. PubMed ID: 30660063
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Catalytic pyrolysis characteristics of scrap printed circuit boards by TG-FTIR.
    Zhao C; Zhang X; Shi L
    Waste Manag; 2017 Mar; 61():354-361. PubMed ID: 28024895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pyrolysis dynamics of two medical plastic wastes: Drivers, behaviors, evolved gases, reaction mechanisms, and pathways.
    Ding Z; Chen H; Liu J; Cai H; Evrendilek F; Buyukada M
    J Hazard Mater; 2021 Jan; 402():123472. PubMed ID: 32731115
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo.
    Chen D; Zhou J; Zhang Q
    Bioresour Technol; 2014 Oct; 169():313-319. PubMed ID: 25063973
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A study on catalytic co-pyrolysis of kitchen waste with tire waste over ZSM-5 using TG-FTIR and Py-GC/MS.
    Chen J; Ma X; Yu Z; Deng T; Chen X; Chen L; Dai M
    Bioresour Technol; 2019 Oct; 289():121585. PubMed ID: 31207410
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of pyrolysis products from a biodiesel phenolic urethane binder.
    Wang Y; Cannon FS; Salama M; Fonseca DA; Giese S
    Environ Sci Technol; 2009 Mar; 43(5):1559-64. PubMed ID: 19350935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.