These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30839814)

  • 1. Implicit symmetric and symplectic exponentially fitted modified Runge-Kutta-Nyström methods for solving oscillatory problems.
    Chen BZ; Zhai WJ
    J Inequal Appl; 2018; 2018(1):321. PubMed ID: 30839814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exponentially fitted symplectic integrator.
    Simos TE; Vigo-Aguiar J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016701. PubMed ID: 12636631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diagonally implicit symplectic Runge-Kutta methods with high algebraic and dispersion order.
    Cong YH; Jiang CX
    ScientificWorldJournal; 2014; 2014():147801. PubMed ID: 24977178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A modified phase-fitted and amplification-fitted Runge-Kutta-Nyström method for the numerical solution of the radial Schrödinger equation.
    Papadopoulos DF; Anastassi ZA; Simos TE
    J Mol Model; 2010 Aug; 16(8):1339-46. PubMed ID: 20127396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exponentially Fitted Two-Derivative Runge-Kutta Methods for Simulation of Oscillatory Genetic Regulatory Systems.
    Chen Z; Li J; Zhang R; You X
    Comput Math Methods Med; 2015; 2015():689137. PubMed ID: 26633991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propagators for the Time-Dependent Kohn-Sham Equations: Multistep, Runge-Kutta, Exponential Runge-Kutta, and Commutator Free Magnus Methods.
    Gómez Pueyo A; Marques MAL; Rubio A; Castro A
    J Chem Theory Comput; 2018 Jun; 14(6):3040-3052. PubMed ID: 29672048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the accuracy of simulation of radiation-reaction effects with implicit Runge-Kutta-Nyström methods.
    Elkina NV; Fedotov AM; Herzing C; Ruhl H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053315. PubMed ID: 25353922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variational symplectic integrator for long-time simulations of the guiding-center motion of charged particles in general magnetic fields.
    Qin H; Guan X
    Phys Rev Lett; 2008 Jan; 100(3):035006. PubMed ID: 18232993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A unified discontinuous Galerkin framework for time integration.
    Zhao S; Wei GW
    Math Methods Appl Sci; 2014 May; 37(7):1042-1071. PubMed ID: 25382889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A modified Runge-Kutta method with phase-lag of order infinity for the numerical solution of the Schrödinger equation and related problems.
    Simos TE; Aguiar JV
    Comput Chem; 2001 May; 25(3):275-81. PubMed ID: 11339410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-order geometric integrators for the variational Gaussian approximation.
    Moghaddasi Fereidani R; Vaníček JJL
    J Chem Phys; 2023 Sep; 159(9):. PubMed ID: 37675850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physics of symplectic integrators: perihelion advances and symplectic corrector algorithms.
    Chin SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036701. PubMed ID: 17500820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ON ENERGY CONSERVATION OF THE SIMPLIFIED TAKAHASHI-IMADA METHOD.
    Hairer E; McLachlan RI; Skeel RD
    Esaim Math Model Numer Anal; 2009 Jul; 43(4):631-644. PubMed ID: 20539750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Nyström-type method for the solution of highly oscillatory Volterra integral equations of the second kind.
    Wu Q; Sun M
    PLoS One; 2023; 18(12):e0295584. PubMed ID: 38096189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical operations on oscillatory functions.
    Ixaru LG
    Comput Chem; 2001 Jan; 25(1):39-53. PubMed ID: 11153800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gradient symplectic algorithms for solving the radial Schrodinger equation.
    Chin SA; Anisimov P
    J Chem Phys; 2006 Feb; 124(5):054106. PubMed ID: 16468850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exponentially fitted open Newton-Cotes differential methods as multilayer symplectic integrators.
    Vanden Berghe G; Van Daele M
    J Chem Phys; 2010 May; 132(20):204107. PubMed ID: 20515088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous integration of mixed quantum-classical systems by density matrix evolution equations using interaction representation and adaptive time step integrator.
    Lensink MF; Mavri J; Berendsen HJ
    J Comput Chem; 1996 Aug; 17(11):1287-95. PubMed ID: 25400147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Symplectic integration and physical interpretation of time-dependent coupled-cluster theory.
    Pedersen TB; Kvaal S
    J Chem Phys; 2019 Apr; 150(14):144106. PubMed ID: 30981246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Symplectic ray tracing based on Hamiltonian optics in gradient-index media.
    Ohno H
    J Opt Soc Am A Opt Image Sci Vis; 2020 Mar; 37(3):411-416. PubMed ID: 32118924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.