These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. Least-squares Legendre spectral element solutions to sound propagation problems. Lin WH J Acoust Soc Am; 2001 Feb; 109(2):465-74. PubMed ID: 11248952 [TBL] [Abstract][Full Text] [Related]
27. Numerical solutions of the Schrödinger equation with source terms or time-dependent potentials. van Dijk W; Toyama FM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063309. PubMed ID: 25615224 [TBL] [Abstract][Full Text] [Related]
28. The physical and qualitative analysis of fluctuations in air and vapour concentrations in a porous medium. Poorun Y; Dauhoo MZ; Bessafi M; Elahee MK; Gopaul A; Khoodaruth A R Soc Open Sci; 2018 May; 5(5):171954. PubMed ID: 29892384 [TBL] [Abstract][Full Text] [Related]
29. Convergence Analysis of Triangular MAC Schemes for Two Dimensional Stokes Equations. Chen L; Wang M; Zhong L J Sci Comput; 2015 Jun; 63(3):716-744. PubMed ID: 26041948 [TBL] [Abstract][Full Text] [Related]
31. Gravity-capillary waves in finite depth on flows of constant vorticity. Hsu HC; Francius M; Montalvo P; Kharif C Proc Math Phys Eng Sci; 2016 Nov; 472(2195):20160363. PubMed ID: 27956873 [TBL] [Abstract][Full Text] [Related]
32. The Optimal Error Estimate of the Fully Discrete Locally Stabilized Finite Volume Method for the Non-Stationary Navier-Stokes Problem. He G; Zhang Y Entropy (Basel); 2022 May; 24(6):. PubMed ID: 35741489 [TBL] [Abstract][Full Text] [Related]
33. An optimized finite element extrapolating method for 2D viscoelastic wave equation. Xia H; Luo Z J Inequal Appl; 2017; 2017(1):218. PubMed ID: 28979080 [TBL] [Abstract][Full Text] [Related]
34. Stable second-order scheme for integrating the Kuramoto-Sivanshinsky equation in polar coordinates using distributed approximating functionals. Blomgren P; Gasner S; Palacios A Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036701. PubMed ID: 16241608 [TBL] [Abstract][Full Text] [Related]
35. Numerical solutions of the time-dependent Schrödinger equation in two dimensions. van Dijk W; Vanderwoerd T; Prins SJ Phys Rev E; 2017 Feb; 95(2-1):023310. PubMed ID: 28298000 [TBL] [Abstract][Full Text] [Related]
36. COMPUTING ILL-POSED TIME-REVERSED 2D NAVIER-STOKES EQUATIONS, USING A STABILIZED EXPLICIT FINITE DIFFERENCE SCHEME MARCHING BACKWARD IN TIME. Carasso AS Inverse Probl Sci Eng; 2020; 28(7):. PubMed ID: 34131431 [TBL] [Abstract][Full Text] [Related]
37. Numerical solution of the time-dependent Schrödinger equation for H_{2}^{+} ion with application to high-harmonic generation and above-threshold ionization. Fetić B; Milošević DB Phys Rev E; 2017 May; 95(5-1):053309. PubMed ID: 28618485 [TBL] [Abstract][Full Text] [Related]
38. Potentially singular solutions of the 3D axisymmetric Euler equations. Luo G; Hou TY Proc Natl Acad Sci U S A; 2014 Sep; 111(36):12968-73. PubMed ID: 25157172 [TBL] [Abstract][Full Text] [Related]
39. Radial Basis Function Finite Difference Method Based on Oseen Iteration for Solving Two-Dimensional Navier-Stokes Equations. Mu L; Feng X Entropy (Basel); 2023 May; 25(5):. PubMed ID: 37238559 [TBL] [Abstract][Full Text] [Related]
40. Error estimates of finite element methods for fractional stochastic Navier-Stokes equations. Li X; Yang X J Inequal Appl; 2018; 2018(1):284. PubMed ID: 30839715 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]