These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 30839869)
1. A class of fourth-order parabolic equation with logarithmic nonlinearity. Li P; Liu C J Inequal Appl; 2018; 2018(1):328. PubMed ID: 30839869 [TBL] [Abstract][Full Text] [Related]
2. Global existence and blow up of solutions for a class of coupled parabolic systems with logarithmic nonlinearity. Deng Q; Zeng F; Wang D Math Biosci Eng; 2022 Jun; 19(8):8580-8600. PubMed ID: 35801478 [TBL] [Abstract][Full Text] [Related]
3. Initial boundary value problem for a class of p-Laplacian equations with logarithmic nonlinearity. Zeng F; Huang Y; Shi P Math Biosci Eng; 2021 May; 18(4):3957-3976. PubMed ID: 34198420 [TBL] [Abstract][Full Text] [Related]
4. Global existence and blow-up results for Ding J J Inequal Appl; 2018; 2018(1):67. PubMed ID: 29628743 [TBL] [Abstract][Full Text] [Related]
5. Initial boundary value problem for fractional p-Laplacian Kirchhoff type equations with logarithmic nonlinearity. Shi P; Jiang M; Zeng F; Huang Y Math Biosci Eng; 2021 Mar; 18(3):2832-2848. PubMed ID: 33892574 [TBL] [Abstract][Full Text] [Related]
6. Well-posedness and qualitative behaviour of a semi-linear parabolic Cauchy problem arising from a generic model for fractional-order autocatalysis. Meyer JC; Needham DJ Proc Math Phys Eng Sci; 2015 Mar; 471(2175):20140632. PubMed ID: 25792950 [TBL] [Abstract][Full Text] [Related]
7. Global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with application to a glioblastoma growth model. Wen Z; Fan M; Asiri AM; Alzahrani EO; El-Dessoky MM; Kuang Y Math Biosci Eng; 2017 Apr; 14(2):407-420. PubMed ID: 27879106 [TBL] [Abstract][Full Text] [Related]
8. On an initial boundary value problem for fractional pseudo-parabolic equation with conformable derivative. Nguyen HT; Tien NV; Yang C Math Biosci Eng; 2022 Aug; 19(11):11232-11259. PubMed ID: 36124589 [TBL] [Abstract][Full Text] [Related]
9. Existence and stability of the doubly nonlinear anisotropic parabolic equation. Zhan H; Feng Z J Math Anal Appl; 2021 May; 497(1):124850. PubMed ID: 33343038 [TBL] [Abstract][Full Text] [Related]
10. Harmonic propagation of finite amplitude sound beams: experimental determination of the nonlinearity parameter B/A. Labat V; Remenieras JP; Matar OB; Ouahabi A; Patat F Ultrasonics; 2000 Mar; 38(1-8):292-6. PubMed ID: 10829676 [TBL] [Abstract][Full Text] [Related]
11. Global solutions of aggregation equations and other flows with random diffusion. Rosenzweig M; Staffilani G Probab Theory Relat Fields; 2023; 185(3-4):1219-1262. PubMed ID: 36969725 [TBL] [Abstract][Full Text] [Related]
12. Refined Regularity of the Blow-Up Set Linked to Refined Asymptotic Behavior for the Semilinear Heat Equation. Ghoul TE; Nguyen VT; Zaag H Adv Nonlinear Stud; 2017 Feb; 17(1):31-54. PubMed ID: 35881660 [TBL] [Abstract][Full Text] [Related]
13. A wide angle and high Mach number parabolic equation. Lingevitch JF; Collins MD; Dacol DK; Drob DP; Rogers JC; Siegmann WL J Acoust Soc Am; 2002 Feb; 111(2):729-34. PubMed ID: 11865817 [TBL] [Abstract][Full Text] [Related]
14. Complete quenching phenomenon for a parabolic Zhu L J Inequal Appl; 2018; 2018(1):248. PubMed ID: 30839634 [TBL] [Abstract][Full Text] [Related]
15. An order approach to SPDEs with antimonotone terms. Scarpa L; Stefanelli U Stoch Partial Differ Equ; 2020; 8(4):819-832. PubMed ID: 33194533 [TBL] [Abstract][Full Text] [Related]
16. Parabolic equation solution of seismo-acoustics problems involving variations in bathymetry and sediment thickness. Collis JM; Siegmann WL; Jensen FB; Zampolli M; Küsel ET; Collins MD J Acoust Soc Am; 2008 Jan; 123(1):51-5. PubMed ID: 18177137 [TBL] [Abstract][Full Text] [Related]
17. Strongly nonlinear parabolic initial-boundary value problems. Brezis H; Browder FE Proc Natl Acad Sci U S A; 1979 Jan; 76(1):38-40. PubMed ID: 16592609 [TBL] [Abstract][Full Text] [Related]
18. Model equation for strongly focused finite-amplitude sound beams. Kamakura T; Ishiwata T; Matsuda K J Acoust Soc Am; 2000 Jun; 107(6):3035-46. PubMed ID: 10875349 [TBL] [Abstract][Full Text] [Related]
20. Critical wetting of a class of nonequilibrium interfaces: a mean-field picture. de Los Santos F; Romera E; Al Hammal O; Muñoz MA Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):031105. PubMed ID: 17500666 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]