BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30839952)

  • 1. Using redox-sensitive mitochondrial cytochrome Raman bands for label-free detection of mitochondrial dysfunction.
    Morimoto T; Chiu LD; Kanda H; Kawagoe H; Ozawa T; Nakamura M; Nishida K; Fujita K; Fujikado T
    Analyst; 2019 Apr; 144(8):2531-2540. PubMed ID: 30839952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping of redox state of mitochondrial cytochromes in live cardiomyocytes using Raman microspectroscopy.
    Brazhe NA; Treiman M; Brazhe AR; Find NL; Maksimov GV; Sosnovtseva OV
    PLoS One; 2012; 7(9):e41990. PubMed ID: 22957018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ Raman study of redox state changes of mitochondrial cytochromes in a perfused rat heart.
    Brazhe NA; Treiman M; Faricelli B; Vestergaard JH; Sosnovtseva O
    PLoS One; 2013; 8(8):e70488. PubMed ID: 24009655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Casting new physicochemical light on the fundamental biological processes in single living cells by using Raman microspectroscopy.
    Kaliaperumal V; Hamaguchi HO
    Chem Rec; 2012 Dec; 12(6):567-80. PubMed ID: 23129551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance Raman quantification of the redox state of cytochromes b and c in-vivo and in-vitro.
    Kakita M; Kaliaperumal V; Hamaguchi HO
    J Biophotonics; 2012 Jan; 5(1):20-4. PubMed ID: 22076935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-Line Raman Spectroscopic Study of Cytochromes' Redox State of Biofilms in Microbial Fuel Cells.
    Krige A; Sjöblom M; Ramser K; Christakopoulos P; Rova U
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30759821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing cytochrome c in living mitochondria with surface-enhanced Raman spectroscopy.
    Brazhe NA; Evlyukhin AB; Goodilin EA; Semenova AA; Novikov SM; Bozhevolnyi SI; Chichkov BN; Sarycheva AS; Baizhumanov AA; Nikelshparg EI; Deev LI; Maksimov EG; Maksimov GV; Sosnovtseva O
    Sci Rep; 2015 Sep; 5():13793. PubMed ID: 26346634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous assessment of metabolic activity of mitochondria using resonance Raman microspectroscopy.
    Lalonde JW; Noojin GD; Pope NJ; Powell SM; Yakovlev VV; Denton ML
    J Biophotonics; 2021 Apr; 14(4):e202000384. PubMed ID: 33438837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free Raman observation of cytochrome c dynamics during apoptosis.
    Okada M; Smith NI; Palonpon AF; Endo H; Kawata S; Sodeoka M; Fujita K
    Proc Natl Acad Sci U S A; 2012 Jan; 109(1):28-32. PubMed ID: 22184220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral evidence for interactions between membrane-bound hemes: resonance Raman spectra of mitochondrial cytochrome b--c1 complex as a function of redox potential.
    Adar F; Erecinska M
    FEBS Lett; 1977 Aug; 80(1):195-200. PubMed ID: 196925
    [No Abstract]   [Full Text] [Related]  

  • 11. Resonance Raman spectroscopy of cytochrome oxidase using Soret excitation: selective enhancement, indicator bands, and structural significance for cytochromes a and a3.
    Woodruff WH; Dallinger RF; Antalis TM; Palmer G
    Biochemistry; 1981 Mar; 20(5):1332-8. PubMed ID: 6261789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-free detection of myocardial ischaemia in the perfused rat heart by spontaneous Raman spectroscopy.
    Ohira S; Tanaka H; Harada Y; Minamikawa T; Kumamoto Y; Matoba S; Yaku H; Takamatsu T
    Sci Rep; 2017 Feb; 7():42401. PubMed ID: 28186163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the cytochrome distribution via linear and nonlinear Raman spectroscopy.
    Walter A; Erdmann S; Bocklitz T; Jung EM; Vogler N; Akimov D; Dietzek B; Rösch P; Kothe E; Popp J
    Analyst; 2010 May; 135(5):908-17. PubMed ID: 20419238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photobleaching of the resonance Raman lines of cytochromes in living yeast cells.
    Okotrub KA; Surovtsev NV
    J Photochem Photobiol B; 2014 Dec; 141():269-74. PubMed ID: 25463677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance Raman spectra of whole mitochondria.
    Adar F; Erecińska M
    Biochemistry; 1978 Dec; 17(25):5484-8. PubMed ID: 215201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of glycerol on photobleaching of cytochrome Raman lines in frozen yeast cells.
    Okotrub KA; Surovtsev NV
    Eur Biophys J; 2018 Sep; 47(6):655-662. PubMed ID: 29704025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial dysfunction related to cell damage induced by 3-hydroxykynurenine and 3-hydroxyanthranilic acid: Non-dependent-effect of early reactive oxygen species production.
    Reyes-Ocampo J; Ramírez-Ortega D; Cervantes GI; Pineda B; Balderas PM; González-Esquivel D; Sánchez-Chapul L; Lugo-Huitrón R; Silva-Adaya D; Ríos C; Jiménez-Anguiano A; Pérez-de la Cruz V
    Neurotoxicology; 2015 Sep; 50():81-91. PubMed ID: 26254737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determinants of mitochondrial O2 dependence in kidney.
    Aw TY; Wilson E; Hagen TM; Jones DP
    Am J Physiol; 1987 Sep; 253(3 Pt 2):F440-7. PubMed ID: 2820242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free analysis of the β-hydroxybutyricacid drug on mitochondrial redox states repairment in type 2 diabetic mice by resonance raman scattering.
    Wang N; Yang A; Tian X; Liao J; Yang Z; Pan Y; Guo Y; He S
    Biomed Pharmacother; 2024 Mar; 172():116320. PubMed ID: 38387134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.