These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 30840038)
1. Electrophysiological Changes During Early Steps of Retinitis Pigmentosa. Bocchero U; Tam BM; Chiu CN; Torre V; Moritz OL Invest Ophthalmol Vis Sci; 2019 Mar; 60(4):933-943. PubMed ID: 30840038 [TBL] [Abstract][Full Text] [Related]
3. Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin. Tam BM; Moritz OL J Neurosci; 2007 Aug; 27(34):9043-53. PubMed ID: 17715341 [TBL] [Abstract][Full Text] [Related]
4. Autophagy in Wen RH; Stanar P; Tam B; Moritz OL Autophagy; 2019 Nov; 15(11):1970-1989. PubMed ID: 30975014 [TBL] [Abstract][Full Text] [Related]
5. Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis pigmentosa. Tam BM; Moritz OL Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3234-41. PubMed ID: 16877386 [TBL] [Abstract][Full Text] [Related]
6. P23H rhodopsin transgenic rat: correlation of retinal function with histopathology. Machida S; Kondo M; Jamison JA; Khan NW; Kononen LT; Sugawara T; Bush RA; Sieving PA Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):3200-9. PubMed ID: 10967084 [TBL] [Abstract][Full Text] [Related]
7. P23H opsin knock-in mice reveal a novel step in retinal rod disc morphogenesis. Sakami S; Kolesnikov AV; Kefalov VJ; Palczewski K Hum Mol Genet; 2014 Apr; 23(7):1723-41. PubMed ID: 24214395 [TBL] [Abstract][Full Text] [Related]
8. The heat-shock response co-inducer arimoclomol protects against retinal degeneration in rhodopsin retinitis pigmentosa. Parfitt DA; Aguila M; McCulley CH; Bevilacqua D; Mendes HF; Athanasiou D; Novoselov SS; Kanuga N; Munro PM; Coffey PJ; Kalmar B; Greensmith L; Cheetham ME Cell Death Dis; 2014 May; 5(5):e1236. PubMed ID: 24853414 [TBL] [Abstract][Full Text] [Related]
9. Restoration of visual function in P23H rhodopsin transgenic rats by gene delivery of BiP/Grp78. Gorbatyuk MS; Knox T; LaVail MM; Gorbatyuk OS; Noorwez SM; Hauswirth WW; Lin JH; Muzyczka N; Lewin AS Proc Natl Acad Sci U S A; 2010 Mar; 107(13):5961-6. PubMed ID: 20231467 [TBL] [Abstract][Full Text] [Related]
10. Xenopus laevis P23H rhodopsin transgene causes rod photoreceptor degeneration that is more severe in the ventral retina and is modulated by light. Zhang R; Oglesby E; Marsh-Armstrong N Exp Eye Res; 2008 Apr; 86(4):612-21. PubMed ID: 18291367 [TBL] [Abstract][Full Text] [Related]
11. Mislocalization and degradation of human P23H-rhodopsin-GFP in a knockin mouse model of retinitis pigmentosa. Price BA; Sandoval IM; Chan F; Simons DL; Wu SM; Wensel TG; Wilson JH Invest Ophthalmol Vis Sci; 2011 Dec; 52(13):9728-36. PubMed ID: 22110080 [TBL] [Abstract][Full Text] [Related]
12. Filtration of Short-Wavelength Light Provides Therapeutic Benefit in Retinitis Pigmentosa Caused by a Common Rhodopsin Mutation. Orlans HO; Merrill J; Barnard AR; Charbel Issa P; Peirson SN; MacLaren RE Invest Ophthalmol Vis Sci; 2019 Jun; 60(7):2733-2742. PubMed ID: 31247114 [TBL] [Abstract][Full Text] [Related]
13. Dysmorphic photoreceptors in a P23H mutant rhodopsin model of retinitis pigmentosa are metabolically active and capable of regenerating to reverse retinal degeneration. Lee DC; Vazquez-Chona FR; Ferrell WD; Tam BM; Jones BW; Marc RE; Moritz OL J Neurosci; 2012 Feb; 32(6):2121-8. PubMed ID: 22323724 [TBL] [Abstract][Full Text] [Related]
14. Photoactivation-induced instability of rhodopsin mutants T4K and T17M in rod outer segments underlies retinal degeneration in X. laevis transgenic models of retinitis pigmentosa. Tam BM; Noorwez SM; Kaushal S; Kono M; Moritz OL J Neurosci; 2014 Oct; 34(40):13336-48. PubMed ID: 25274813 [TBL] [Abstract][Full Text] [Related]
15. The status of cones in the rhodopsin mutant P23H-3 retina: light-regulated damage and repair in parallel with rods. Chrysostomou V; Stone J; Stowe S; Barnett NL; Valter K Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1116-25. PubMed ID: 18326739 [TBL] [Abstract][Full Text] [Related]
16. Alterations in retinal rod outer segment fatty acids and light-damage susceptibility in P23H rats. Bicknell IR; Darrow R; Barsalou L; Fliesler SJ; Organisciak DT Mol Vis; 2002 Sep; 8():333-40. PubMed ID: 12355060 [TBL] [Abstract][Full Text] [Related]
17. Opsin localization and rhodopsin photochemistry in a transgenic mouse model of retinitis pigmentosa. Wu TH; Ting TD; Okajima TI; Pepperberg DR; Ho YK; Ripps H; Naash MI Neuroscience; 1998 Dec; 87(3):709-17. PubMed ID: 9758235 [TBL] [Abstract][Full Text] [Related]
18. Recent insights into the mechanisms underlying light-dependent retinal degeneration from X. laevis models of retinitis pigmentosa. Moritz OL; Tam BM Adv Exp Med Biol; 2010; 664():509-15. PubMed ID: 20238053 [TBL] [Abstract][Full Text] [Related]
20. Abnormal activation and inactivation mechanisms of rod transduction in patients with autosomal dominant retinitis pigmentosa and the pro-23-his mutation. Birch DG; Hood DC; Nusinowitz S; Pepperberg DR Invest Ophthalmol Vis Sci; 1995 Jul; 36(8):1603-14. PubMed ID: 7601641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]