BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

607 related articles for article (PubMed ID: 30840181)

  • 1. Principles of confounder selection.
    VanderWeele TJ
    Eur J Epidemiol; 2019 Mar; 34(3):211-219. PubMed ID: 30840181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new criterion for confounder selection.
    VanderWeele TJ; Shpitser I
    Biometrics; 2011 Dec; 67(4):1406-13. PubMed ID: 21627630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning for improving high-dimensional proxy confounder adjustment in healthcare database studies: An overview of the current literature.
    Wyss R; Yanover C; El-Hay T; Bennett D; Platt RW; Zullo AR; Sari G; Wen X; Ye Y; Yuan H; Gokhale M; Patorno E; Lin KJ
    Pharmacoepidemiol Drug Saf; 2022 Sep; 31(9):932-943. PubMed ID: 35729705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covariate selection strategies for causal inference: Classification and comparison.
    Witte J; Didelez V
    Biom J; 2019 Sep; 61(5):1270-1289. PubMed ID: 30306605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of covariate selection for non-experimental comparative effectiveness research.
    Sauer BC; Brookhart MA; Roy J; VanderWeele T
    Pharmacoepidemiol Drug Saf; 2013 Nov; 22(11):1139-45. PubMed ID: 24006330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covariate Selection from Data Collection Onwards: A Methodology for Neurosurgeons.
    Keen R; Tiemeier H
    World Neurosurg; 2022 May; 161():245-250. PubMed ID: 35505541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covariate selection in causal learning under non-Gaussianity.
    Zhang B; Wiedermann W
    Behav Res Methods; 2024 Apr; 56(4):4019-4037. PubMed ID: 37704788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Confounder selection strategies targeting stable treatment effect estimators.
    Loh WW; Vansteelandt S
    Stat Med; 2021 Feb; 40(3):607-630. PubMed ID: 33150645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the impact of unmeasured confounders for credible and reliable real-world evidence.
    Zhang X; Stamey JD; Mathur MB
    Pharmacoepidemiol Drug Saf; 2020 Oct; 29(10):1219-1227. PubMed ID: 32929830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the definition of a confounder.
    VanderWeele TJ; Shpitser I
    Ann Stat; 2013 Feb; 41(1):196-220. PubMed ID: 25544784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using computable knowledge mined from the literature to elucidate confounders for EHR-based pharmacovigilance.
    Malec SA; Wei P; Bernstam EV; Boyce RD; Cohen T
    J Biomed Inform; 2021 May; 117():103719. PubMed ID: 33716168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adjustment for unmeasured confounding through informative priors for the confounder-outcome relation.
    Groenwold RHH; Shofty I; Miočević M; van Smeden M; Klugkist I
    BMC Med Res Methodol; 2018 Dec; 18(1):174. PubMed ID: 30577773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accounting for uncertainty in confounder and effect modifier selection when estimating average causal effects in generalized linear models.
    Wang C; Dominici F; Parmigiani G; Zigler CM
    Biometrics; 2015 Sep; 71(3):654-65. PubMed ID: 25899155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Confounder adjustment in observational comparative effectiveness researches: (2) statistical adjustment approaches for unmeasured confounders].
    Huang LL; Wei YY; Chen F
    Zhonghua Liu Xing Bing Xue Za Zhi; 2019 Nov; 40(11):1450-1455. PubMed ID: 31838820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Instrumental variables as bias amplifiers with general outcome and confounding.
    Ding P; VanderWeele TJ; Robins JM
    Biometrika; 2017 Jun; 104(2):291-302. PubMed ID: 29033459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data-driven confounder selection via Markov and Bayesian networks.
    Häggström J
    Biometrics; 2018 Jun; 74(2):389-398. PubMed ID: 29096036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Introduction to causal diagrams for confounder selection.
    Williamson EJ; Aitken Z; Lawrie J; Dharmage SC; Burgess JA; Forbes AB
    Respirology; 2014 Apr; 19(3):303-11. PubMed ID: 24447391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity Analysis Without Assumptions.
    Ding P; VanderWeele TJ
    Epidemiology; 2016 May; 27(3):368-77. PubMed ID: 26841057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simulation study on matched case-control designs in the perspective of causal diagrams.
    Li H; Yuan Z; Su P; Wang T; Yu Y; Sun X; Xue F
    BMC Med Res Methodol; 2016 Aug; 16(1):102. PubMed ID: 27543263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data-driven covariate selection for confounding adjustment by focusing on the stability of the effect estimator.
    Loh WW; Ren D
    Psychol Methods; 2023 Apr; ():. PubMed ID: 37104763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.