These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 30840353)
1. Optimization of pH induced flocculation of marine and freshwater microalgae via central composite design. Akış S; Özçimen D Biotechnol Prog; 2019 May; 35(3):e2801. PubMed ID: 30840353 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Wu Z; Zhu Y; Huang W; Zhang C; Li T; Zhang Y; Li A Bioresour Technol; 2012 Apr; 110():496-502. PubMed ID: 22326335 [TBL] [Abstract][Full Text] [Related]
3. Harvesting of microalgae by flocculation with poly (γ-glutamic acid). Zheng H; Gao Z; Yin J; Tang X; Ji X; Huang H Bioresour Technol; 2012 May; 112():212-20. PubMed ID: 22425514 [TBL] [Abstract][Full Text] [Related]
4. Optimization of ferric chloride concentration and pH to improve both cell growth and flocculation in Chlorella vulgaris cultures. Application to medium reuse in an integrated continuous culture bioprocess. Lecina M; Nadal G; Solà C; Prat J; Cairó JJ Bioresour Technol; 2016 Sep; 216():211-8. PubMed ID: 27240237 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae. Vandamme D; Pontes SC; Goiris K; Foubert I; Pinoy LJ; Muylaert K Biotechnol Bioeng; 2011 Oct; 108(10):2320-9. PubMed ID: 21557200 [TBL] [Abstract][Full Text] [Related]
6. A novel method to harvest Chlorella sp. by co-flocculation/air flotation. Zhang H; Lin Z; Tan D; Liu C; Kuang Y; Li Z Biotechnol Lett; 2017 Jan; 39(1):79-84. PubMed ID: 27654824 [TBL] [Abstract][Full Text] [Related]
7. Use of natural pH variation to increase the flocculation of the marine microalgae Nannochloropsis oculata. Sales R; Abreu PC Appl Biochem Biotechnol; 2015 Feb; 175(4):2012-9. PubMed ID: 25432344 [TBL] [Abstract][Full Text] [Related]
8. Effective flocculation of target microalgae with self-flocculating microalgae induced by pH decrease. Liu J; Tao Y; Wu J; Zhu Y; Gao B; Tang Y; Li A; Zhang C; Zhang Y Bioresour Technol; 2014 Sep; 167():367-75. PubMed ID: 24998477 [TBL] [Abstract][Full Text] [Related]
9. Effective harvesting of the microalgae Chlorella protothecoides via bioflocculation with cationic starch. Letelier-Gordo CO; Holdt SL; De Francisci D; Karakashev DB; Angelidaki I Bioresour Technol; 2014 Sep; 167():214-8. PubMed ID: 24983692 [TBL] [Abstract][Full Text] [Related]
10. The effect of recycling culture medium after harvesting of Chlorella vulgaris biomass by flocculating bacteria on microalgal growth and the functionary mechanism. Li Y; Zhang Z; Duan Y; Wang H Bioresour Technol; 2019 May; 280():188-198. PubMed ID: 30771574 [TBL] [Abstract][Full Text] [Related]
11. Effective harvesting of microalgae: Comparison of different polymeric flocculants. Gerchman Y; Vasker B; Tavasi M; Mishael Y; Kinel-Tahan Y; Yehoshua Y Bioresour Technol; 2017 Mar; 228():141-146. PubMed ID: 28061396 [TBL] [Abstract][Full Text] [Related]
12. Harvesting of Chlorella sorokiniana by co-culture with the filamentous fungus Isaria fumosorosea: A potential sustainable feedstock for hydrothermal gasification. Mackay S; Gomes E; Holliger C; Bauer R; Schwitzguébel JP Bioresour Technol; 2015 Jun; 185():353-61. PubMed ID: 25795450 [TBL] [Abstract][Full Text] [Related]
13. Cultivating and harvesting of marine alga Nannochloropsis oculata in local municipal wastewater for biodiesel. Şirin S; Sillanpää M Bioresour Technol; 2015 Sep; 191():79-87. PubMed ID: 25983226 [TBL] [Abstract][Full Text] [Related]
14. The potential of a natural biopolymeric flocculant, ε-poly-L-lysine, for harvesting Chlorella ellipsoidea and its sustainability perspectives for cost and toxicity. Noh W; Park S; Lee SJ; Ryu BG; Kim J Bioprocess Biosyst Eng; 2019 Jun; 42(6):971-978. PubMed ID: 30830266 [TBL] [Abstract][Full Text] [Related]
15. A comprehensive analysis of an effective flocculation method for high quality microalgal biomass harvesting. Labeeuw L; Commault AS; Kuzhiumparambil U; Emmerton B; Nguyen LN; Nghiem LD; Ralph PJ Sci Total Environ; 2021 Jan; 752():141708. PubMed ID: 32892040 [TBL] [Abstract][Full Text] [Related]
16. Effects of various abiotic factors on biomass growth and lipid yield of Chlorella minutissima for sustainable biodiesel production. Chandra R; Amit ; Ghosh UK Environ Sci Pollut Res Int; 2019 Feb; 26(4):3848-3861. PubMed ID: 30539390 [TBL] [Abstract][Full Text] [Related]
17. Repeated use of stable magnetic flocculant for efficient harvest of oleaginous Chlorella sp. Lee K; Lee SY; Praveenkumar R; Kim B; Seo JY; Jeon SG; Na JG; Park JY; Kim DM; Oh YK Bioresour Technol; 2014 Sep; 167():284-90. PubMed ID: 24995878 [TBL] [Abstract][Full Text] [Related]
18. Optimization of flocculation efficiency of lipid-rich marine Chlorella sp. biomass and evaluation of its composition in different cultivation modes. Mandik YI; Cheirsilp B; Boonsawang P; Prasertsan P Bioresour Technol; 2015 Apr; 182():89-97. PubMed ID: 25682228 [TBL] [Abstract][Full Text] [Related]
19. Flocculation of Chlorella vulgaris with alum and pH adjustment. Mohseni F; Moosavi Zenooz A Biotechnol Appl Biochem; 2022 Jun; 69(3):1112-1120. PubMed ID: 34036645 [TBL] [Abstract][Full Text] [Related]
20. Flocculation properties of several microalgae and a cyanobacterium species during ferric chloride, chitosan and alkaline flocculation. Lama S; Muylaert K; Karki TB; Foubert I; Henderson RK; Vandamme D Bioresour Technol; 2016 Nov; 220():464-470. PubMed ID: 27611030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]