These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30840671)

  • 1. Introducing chaotic codes for the modulation of code modulated visual evoked potentials (c-VEP) in normal adults for visual fatigue reduction.
    Shirzhiyan Z; Keihani A; Farahi M; Shamsi E; GolMohammadi M; Mahnam A; Haidari MR; Jafari AH
    PLoS One; 2019; 14(3):e0213197. PubMed ID: 30840671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward New Modalities in VEP-Based BCI Applications Using Dynamical Stimuli: Introducing Quasi-Periodic and Chaotic VEP-Based BCI.
    Shirzhiyan Z; Keihani A; Farahi M; Shamsi E; GolMohammadi M; Mahnam A; Haidari MR; Jafari AH
    Front Neurosci; 2020; 14():534619. PubMed ID: 33328841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of code-modulated visual evoked potentials using adaptive modified covariance beamformer and EEG signals.
    Zarei A; Mohammadzadeh Asl B
    Comput Methods Programs Biomed; 2022 Jun; 221():106859. PubMed ID: 35569239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-speed BCI based on code modulation VEP.
    Bin G; Gao X; Wang Y; Li Y; Hong B; Gao S
    J Neural Eng; 2011 Apr; 8(2):025015. PubMed ID: 21436527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel c-VEP BCI Paradigm for Increasing the Number of Stimulus Targets Based on Grouping Modulation With Different Codes.
    Wei Q; Liu Y; Gao X; Wang Y; Yang C; Lu Z; Gong H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1178-1187. PubMed ID: 29877842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VEP-based brain-computer interfaces modulated by Golay complementary series for improving performance.
    Wei Q; Huang Y; Li M; Lu Z
    Technol Health Care; 2016 Apr; 24 Suppl 2():S541-9. PubMed ID: 27163316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 120-target brain-computer interface based on code-modulated visual evoked potentials.
    Sun Q; Zheng L; Pei W; Gao X; Wang Y
    J Neurosci Methods; 2022 Jun; 375():109597. PubMed ID: 35427686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multi-target brain-computer interface based on code modulated visual evoked potentials.
    Liu Y; Wei Q; Lu Z
    PLoS One; 2018; 13(8):e0202478. PubMed ID: 30118504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulus Specificity of Brain-Computer Interfaces Based on Code Modulation Visual Evoked Potentials.
    Wei Q; Feng S; Lu Z
    PLoS One; 2016; 11(5):e0156416. PubMed ID: 27243454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Code-modulated visual evoked potentials using fast stimulus presentation and spatiotemporal beamformer decoding.
    Wittevrongel B; Van Wolputte E; Van Hulle MM
    Sci Rep; 2017 Nov; 7(1):15037. PubMed ID: 29118386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards solving of the Illiteracy phenomenon for VEP-based brain-computer interfaces.
    Volosyak I; Rezeika A; Benda M; Gembler F; Stawicki P
    Biomed Phys Eng Express; 2020 May; 6(3):035034. PubMed ID: 33438679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural decoding of code modulated visual evoked potentials by spatio-temporal inverse filtering for brain computer interfaces.
    Sato JI; Washizawa Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1484-1487. PubMed ID: 28268607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of Visual Stimulus Sequence in a Brain-Computer Interface Based on Code Modulated Visual Evoked Potentials.
    Behboodi M; Mahnam A; Marateb H; Rabbani H
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2762-2772. PubMed ID: 33320813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative study of pseudorandom sequences used in a c-VEP based BCI for online wheelchair control.
    Isaksen J; Mohebbi A; Puthusserypady S
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1512-1515. PubMed ID: 28324945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New approach for designing cVEP BCI stimuli based on superposition of edge responses.
    Yasinzai MN; Ider YZ
    Biomed Phys Eng Express; 2020 Jun; 6(4):045018. PubMed ID: 33444278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Training -Free Steady-State Visual Evoked Potential Brain-Computer Interface Based on Filter Bank Canonical Correlation Analysis and Spatiotemporal Beamforming Decoding.
    Ge S; Jiang Y; Wang P; Wang H; Zheng W
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1714-1723. PubMed ID: 31403435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis.
    Zhang Y; Zhou G; Jin J; Wang X; Cichocki A
    Int J Neural Syst; 2014 Jun; 24(4):1450013. PubMed ID: 24694168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high-performance brain switch based on code-modulated visual evoked potentials.
    Zheng L; Pei W; Gao X; Zhang L; Wang Y
    J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34996051
    [No Abstract]   [Full Text] [Related]  

  • 20. Sequence detection analysis based on canonical correlation for steady-state visual evoked potential brain computer interfaces.
    Cao L; Ju Z; Li J; Jian R; Jiang C
    J Neurosci Methods; 2015 Sep; 253():10-7. PubMed ID: 26014663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.