BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 30840917)

  • 1. Progress in the discovery of naturally occurring anti-diabetic drugs and in the identification of their molecular targets.
    He JH; Chen LX; Li H
    Fitoterapia; 2019 Apr; 134():270-289. PubMed ID: 30840917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms.
    Xu L; Li Y; Dai Y; Peng J
    Pharmacol Res; 2018 Apr; 130():451-465. PubMed ID: 29395440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of synthetic drugs for type 2 diabetes drug discovery.
    Safavi M; Foroumadi A; Abdollahi M
    Expert Opin Drug Discov; 2013 Nov; 8(11):1339-63. PubMed ID: 24050217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current anti-diabetic agents and their molecular targets: A review.
    Kerru N; Singh-Pillay A; Awolade P; Singh P
    Eur J Med Chem; 2018 May; 152():436-488. PubMed ID: 29751237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diabetes and plant-derived natural products: From ethnopharmacological approaches to their potential for modern drug discovery and development.
    Jugran AK; Rawat S; Devkota HP; Bhatt ID; Rawal RS
    Phytother Res; 2021 Jan; 35(1):223-245. PubMed ID: 32909364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring Natural Products as a Source for Antidiabetic Lead Compounds and Possible Lead Optimization.
    Khalaf RA
    Curr Top Med Chem; 2016; 16(23):2549-61. PubMed ID: 27086794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural products with potential hypoglycemic activity in T2DM: 2019-2023.
    Fei Z; Xu Y; Zhang G; Liu Y; Li H; Chen L
    Phytochemistry; 2024 Jul; 223():114130. PubMed ID: 38714289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent discovery of plant-derived anti-diabetic natural products.
    Hung HY; Qian K; Morris-Natschke SL; Hsu CS; Lee KH
    Nat Prod Rep; 2012 May; 29(5):580-606. PubMed ID: 22491825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QSAR studies in the discovery of novel type-II diabetic therapies.
    Abuhammad A; Taha MO
    Expert Opin Drug Discov; 2016; 11(2):197-214. PubMed ID: 26558613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review on natural products for controlling type 2 diabetes with an emphasis on their mechanisms of actions.
    Salimifar M; Fatehi-Hassanabad Z; Fatehi M
    Curr Diabetes Rev; 2013 Sep; 9(5):402-11. PubMed ID: 23865416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Updates on Managing Type 2 Diabetes Mellitus with Natural Products: Towards Antidiabetic Drug Development.
    Alam F; Islam MA; Kamal MA; Gan SH
    Curr Med Chem; 2018; 25(39):5395-5431. PubMed ID: 27528060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular docking studies of (4Z, 12Z)-cyclopentadeca-4, 12-dienone from Grewia hirsuta with some targets related to type 2 diabetes.
    Natarajan A; Sugumar S; Bitragunta S; Balasubramanyan N
    BMC Complement Altern Med; 2015 Mar; 15():73. PubMed ID: 25885803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactive Agent Discovery from the Natural Compounds for the Treatment of Type 2 Diabetes Rat Model.
    Yang SC; Hsu CY; Chou WL; Fang JY; Chuang SY
    Molecules; 2020 Dec; 25(23):. PubMed ID: 33287318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro anti-diabetic activity of flavonoids and pheophytins from Allophylus cominia Sw . on PTP1B, DPPIV, alpha-glucosidase and alpha-amylase enzymes.
    Semaan DG; Igoli JO; Young L; Marrero E; Gray AI; Rowan EG
    J Ethnopharmacol; 2017 May; 203():39-46. PubMed ID: 28341245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Docking Assisted Prediction and Biological Evaluation of Sideritis L. Components with PTP1b Inhibitory Action and Probable Anti-Diabetic Properties.
    Eleftheriou P; Therianou E; Lazari D; Dirnali S; Micha A
    Curr Top Med Chem; 2019; 19(5):383-392. PubMed ID: 30806317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and biological evaluations of marine oxohexadecenoic acids: PPARα/γ dual agonism and anti-diabetic target gene effects.
    Sæther T; Paulsen SM; Tungen JE; Vik A; Aursnes M; Holen T; Hansen TV; Nebb HI
    Eur J Med Chem; 2018 Jul; 155():736-753. PubMed ID: 29940464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Systematic Review on Anti-diabetic Properties of Chalcones.
    Rocha S; Ribeiro D; Fernandes E; Freitas M
    Curr Med Chem; 2020; 27(14):2257-2321. PubMed ID: 30277140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PTP1b Inhibition, A Promising Approach for the Treatment of Diabetes Type II.
    Eleftheriou P; Geronikaki A; Petrou A
    Curr Top Med Chem; 2019; 19(4):246-263. PubMed ID: 30714526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of PPARgamma partial agonists of natural origin (II): in silico prediction in natural extracts with known antidiabetic activity.
    Guasch L; Sala E; Mulero M; Valls C; Salvadó MJ; Pujadas G; Garcia-Vallvé S
    PLoS One; 2013; 8(2):e55889. PubMed ID: 23405231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Past and current perspective on new therapeutic targets for Type-II diabetes.
    Patil PD; Mahajan UB; Patil KR; Chaudhari S; Patil CR; Agrawal YO; Ojha S; Goyal SN
    Drug Des Devel Ther; 2017; 11():1567-1583. PubMed ID: 28579755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.