These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 30840973)
1. Patient-Specific Computational Fluid Dynamics in Ruptured Posterior Communicating Aneurysms Using Measured Non-Newtonian Viscosity : A Preliminary Study. Lee UY; Jung J; Kwak HS; Lee DH; Chung GH; Park JS; Koh EJ J Korean Neurosurg Soc; 2019 Mar; 62(2):183-192. PubMed ID: 30840973 [TBL] [Abstract][Full Text] [Related]
2. Size-Dependent Distribution of Patient-Specific Hemodynamic Factors in Unruptured Cerebral Aneurysms Using Computational Fluid Dynamics. Lee UY; Chung GH; Jung J; Kwak HS Diagnostics (Basel); 2020 Jan; 10(2):. PubMed ID: 31991621 [TBL] [Abstract][Full Text] [Related]
3. Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk. Xiang J; Tremmel M; Kolega J; Levy EI; Natarajan SK; Meng H J Neurointerv Surg; 2012 Sep; 4(5):351-7. PubMed ID: 21990529 [TBL] [Abstract][Full Text] [Related]
4. Realistic non-Newtonian viscosity modelling highlights hemodynamic differences between intracranial aneurysms with and without surface blebs. Hippelheuser JE; Lauric A; Cohen AD; Malek AM J Biomech; 2014 Nov; 47(15):3695-703. PubMed ID: 25446269 [TBL] [Abstract][Full Text] [Related]
5. Non-Newtonian Blood Modeling in Intracranial Aneurysm Hemodynamics: Impact on the Wall Shear Stress and Oscillatory Shear Index Metrics for Ruptured and Unruptured Cases. Oliveira IL; Santos GB; Gasche JL; Militzer J; Baccin CE J Biomech Eng; 2021 Jul; 143(7):. PubMed ID: 33729441 [TBL] [Abstract][Full Text] [Related]
6. Standardized viscosity as a source of error in computational fluid dynamic simulations of cerebral aneurysms. Fillingham P; Belur N; Sweem R; Barbour MC; Marsh LMM; Aliseda A; Levitt MR Med Phys; 2024 Feb; 51(2):1499-1508. PubMed ID: 38150511 [TBL] [Abstract][Full Text] [Related]
7. A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions. Evju Ø; Valen-Sendstad K; Mardal KA J Biomech; 2013 Nov; 46(16):2802-8. PubMed ID: 24099744 [TBL] [Abstract][Full Text] [Related]
8. Wall Shear Stress and Flow Patterns in Unruptured and Ruptured Anterior Communicating Artery Aneurysms Using Computational Fluid Dynamics. Lee UY; Jung J; Kwak HS; Lee DH; Chung GH; Park JS; Koh EJ J Korean Neurosurg Soc; 2018 Nov; 61(6):689-699. PubMed ID: 30396243 [TBL] [Abstract][Full Text] [Related]
9. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids. Frolov SV; Sindeev SV; Liepsch D; Balasso A Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725 [TBL] [Abstract][Full Text] [Related]
10. Computational fluid dynamics in abdominal aorta bifurcation: non-Newtonian versus Newtonian blood flow in a real case study. Soares AA; Gonzaga S; Oliveira C; Simões A; Rouboa AI Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):822-831. PubMed ID: 28367643 [TBL] [Abstract][Full Text] [Related]
11. Numerical investigation of different viscosity models on pulsatile blood flow of thoracic aortic aneurysm (TAA) in a patient-specific model. Faraji A; Sahebi M; SalavatiDezfouli S Comput Methods Biomech Biomed Engin; 2023 Jun; 26(8):986-998. PubMed ID: 35882063 [TBL] [Abstract][Full Text] [Related]
12. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis. Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244 [TBL] [Abstract][Full Text] [Related]
13. Hemodynamic characteristics in a cerebral aneurysm model using non-Newtonian blood analogues. Yi H; Yang Z; Johnson M; Bramlage L; Ludwig B Phys Fluids (1994); 2022 Oct; 34(10):103101. PubMed ID: 36212224 [TBL] [Abstract][Full Text] [Related]
14. Non-Newtonian versus numerical rheology: Practical impact of shear-thinning on the prediction of stable and unstable flows in intracranial aneurysms. Khan MO; Steinman DA; Valen-Sendstad K Int J Numer Method Biomed Eng; 2017 Jul; 33(7):. PubMed ID: 27696717 [TBL] [Abstract][Full Text] [Related]
15. Permeability and fluid flow-induced wall shear stress of bone tissue scaffolds: Computational fluid dynamic analysis using Newtonian and non-Newtonian blood flow models. Ali D; Sen S Comput Biol Med; 2018 Aug; 99():201-208. PubMed ID: 29957377 [TBL] [Abstract][Full Text] [Related]
16. Variability of hemodynamic parameters using the common viscosity assumption in a computational fluid dynamics analysis of intracranial aneurysms. Suzuki T; Takao H; Suzuki T; Suzuki T; Masuda S; Dahmani C; Watanabe M; Mamori H; Ishibashi T; Yamamoto H; Yamamoto M; Murayama Y Technol Health Care; 2017; 25(1):37-47. PubMed ID: 27497460 [TBL] [Abstract][Full Text] [Related]
17. Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points. Fukazawa K; Ishida F; Umeda Y; Miura Y; Shimosaka S; Matsushima S; Taki W; Suzuki H World Neurosurg; 2015 Jan; 83(1):80-6. PubMed ID: 23403347 [TBL] [Abstract][Full Text] [Related]
18. Wall shear stress association with rupture status in volume matched sidewall aneurysms. Lauric A; Hippelheuser J; Cohen AD; Kadasi LM; Malek AM J Neurointerv Surg; 2014 Jul; 6(6):466-73. PubMed ID: 23929550 [TBL] [Abstract][Full Text] [Related]
19. Comparison of Newtonian and Non-newtonian Fluid Models in Blood Flow Simulation in Patients With Intracranial Arterial Stenosis. Liu H; Lan L; Abrigo J; Ip HL; Soo Y; Zheng D; Wong KS; Wang D; Shi L; Leung TW; Leng X Front Physiol; 2021; 12():718540. PubMed ID: 34552505 [TBL] [Abstract][Full Text] [Related]
20. Evidence for non-Newtonian behavior of intracranial blood flow from Doppler ultrasonography measurements. Saqr KM; Mansour O; Tupin S; Hassan T; Ohta M Med Biol Eng Comput; 2019 May; 57(5):1029-1036. PubMed ID: 30523533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]