These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 30841378)
1. Effects of nanoplastics and microplastics on the growth of sediment-rooted macrophytes. van Weert S; Redondo-Hasselerharm PE; Diepens NJ; Koelmans AA Sci Total Environ; 2019 Mar; 654():1040-1047. PubMed ID: 30841378 [TBL] [Abstract][Full Text] [Related]
2. Comparing growth development of Myriophyllum spp. in laboratory and field experiments for ecotoxicological testing. Knauer K; Mohr S; Feiler U Environ Sci Pollut Res Int; 2008 Jun; 15(4):322-31. PubMed ID: 18491155 [TBL] [Abstract][Full Text] [Related]
3. Effects of ammonium pulse on the growth of three submerged macrophytes. Tan X; Yuan G; Fu H; Peng H; Ge D; Lou Q; Zhong J PLoS One; 2019; 14(7):e0219161. PubMed ID: 31339879 [TBL] [Abstract][Full Text] [Related]
4. Response and recovery of the macrophytes Elodea canadensis and Myriophyllum spicatum following a pulse exposure to the herbicide iofensulfuron-sodium in outdoor stream mesocosms. Wieczorek MV; Bakanov N; Lagadic L; Bruns E; Schulz R Environ Toxicol Chem; 2017 Apr; 36(4):1090-1100. PubMed ID: 27696510 [TBL] [Abstract][Full Text] [Related]
5. Effects of metsulfuron methyl and cypermethrin exposure on freshwater model ecosystems. Wendt-Rasch L; Pirzadeh P; Woin P Aquat Toxicol; 2003 May; 63(3):243-56. PubMed ID: 12711414 [TBL] [Abstract][Full Text] [Related]
6. Monensin is not toxic to aquatic macrophytes at environmentally relevant concentrations. McGregor EB; Solomon KR; Hanson ML Arch Environ Contam Toxicol; 2007 Nov; 53(4):541-51. PubMed ID: 17657449 [TBL] [Abstract][Full Text] [Related]
7. Response strategies of stem/leaves endophyte communities to nano-plastics regulate growth performance of submerged macrophytes. Hao B; Wu H; Zhang S; He B J Hazard Mater; 2024 Feb; 464():132883. PubMed ID: 37952333 [TBL] [Abstract][Full Text] [Related]
8. Seasonal dynamics of the macrophyte test species Myriophyllum spicatum over two years in experimental ditches for population modeling application in risk assessment. Arts GHP; van Smeden J; Wolters MF; Belgers JDM; Matser AM; Hommen U; Bruns E; Heine S; Solga A; Taylor S Integr Environ Assess Manag; 2022 Sep; 18(5):1375-1386. PubMed ID: 34755447 [TBL] [Abstract][Full Text] [Related]
9. Environmentally relevant concentrations of polyethylene microplastics negatively impact the survival, growth and emergence of sediment-dwelling invertebrates. Ziajahromi S; Kumar A; Neale PA; Leusch FDL Environ Pollut; 2018 May; 236():425-431. PubMed ID: 29414367 [TBL] [Abstract][Full Text] [Related]
10. The effect of creosote on the growth of an axenic culture of Myriophyllum spicatum L. McCann JH; Greenberg BM; Solomon KR Aquat Toxicol; 2000 Sep; 50(3):265-274. PubMed ID: 10958960 [TBL] [Abstract][Full Text] [Related]
11. Occurrence, Fate and Fluxes of Plastics and Microplastics in Terrestrial and Freshwater Ecosystems. Schell T; Rico A; Vighi M Rev Environ Contam Toxicol; 2020; 250():1-43. PubMed ID: 32025906 [TBL] [Abstract][Full Text] [Related]
12. Influence of light intensity on the toxicity of atrazine to the submerged freshwater aquatic macrophyte Elodea canadensis. Brain RA; Hoberg J; Hosmer AJ; Wall SB Ecotoxicol Environ Saf; 2012 May; 79():55-61. PubMed ID: 22204826 [TBL] [Abstract][Full Text] [Related]
13. Use of the aquatic plant Elodea canadensis to assess toxicity and genotoxicity of Yenisei River sediments. Zotina TA; Trofimova EA; Medvedeva MY; Dementyev DV; Bolsunovsky AY Environ Toxicol Chem; 2015 Oct; 34(10):2310-21. PubMed ID: 25940213 [TBL] [Abstract][Full Text] [Related]
14. Impact of microplastics on the foraging, photosynthesis and digestive systems of submerged carnivorous macrophytes under low and high nutrient concentrations. Yu H; Qi W; Cao X; Wang Y; Li Y; Xu Y; Zhang X; Peng J; Qu J Environ Pollut; 2022 Jan; 292(Pt A):118220. PubMed ID: 34606972 [TBL] [Abstract][Full Text] [Related]
15. Phytotoxicity of atrazine, isoproturon, and diuron to submersed macrophytes in outdoor mesocosms. Knauert S; Singer H; Hollender J; Knauer K Environ Pollut; 2010 Jan; 158(1):167-74. PubMed ID: 19656602 [TBL] [Abstract][Full Text] [Related]
16. Some arguments in favor of a Myriophyllum aquaticum growth inhibition test in a water-sediment system as an additional test in risk assessment of herbicides. Tunić T; Knežević V; Kerkez Đ; Tubić A; Šunjka D; Lazić S; Brkić D; Teodorović I Environ Toxicol Chem; 2015 Sep; 34(9):2104-15. PubMed ID: 25943248 [TBL] [Abstract][Full Text] [Related]
17. Genotypes of the aquatic plant Myriophyllum spicatum with different growth strategies show contrasting sensitivities to copper contamination. Roubeau Dumont E; Larue C; Michel HC; Gryta H; Liné C; Baqué D; Maria Gross E; Elger A Chemosphere; 2020 Apr; 245():125552. PubMed ID: 31846788 [TBL] [Abstract][Full Text] [Related]
18. Methods for assessing the toxicity of herbicides to submersed aquatic plants. Knauer K; Vervliet-Scheebaum M; Dark RJ; Maund SJ Pest Manag Sci; 2006 Aug; 62(8):715-22. PubMed ID: 16703656 [TBL] [Abstract][Full Text] [Related]
19. Determination of the pharmaceuticals-nano/microplastics in aquatic systems by analytical and instrumental methods. Pashaei R; Dzingelevičienė R; Abbasi S; Szultka-Młyńska M; Buszewski B Environ Monit Assess; 2022 Jan; 194(2):93. PubMed ID: 35028740 [TBL] [Abstract][Full Text] [Related]
20. Adsorption, uptake and toxicity of micro- and nanoplastics: Effects on terrestrial plants and aquatic macrophytes. Mateos-Cárdenas A; van Pelt FNAM; O'Halloran J; Jansen MAK Environ Pollut; 2021 Sep; 284():117183. PubMed ID: 33906031 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]