These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30841556)

  • 1. Coupling Computational Fluid Dynamics Simulations and Statistical Moments for Designing Healthy Indoor Spaces.
    Hoque S; Omar FB
    Int J Environ Res Public Health; 2019 Mar; 16(5):. PubMed ID: 30841556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Outdoor Trees Affect Indoor Particulate Matter Dispersion: CFD Simulations in a Naturally Ventilated Auditorium.
    Hong B; Qin H; Jiang R; Xu M; Niu J
    Int J Environ Res Public Health; 2018 Dec; 15(12):. PubMed ID: 30558174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of ionic air purifiers for reducing aerosol exposure in confined indoor spaces.
    Grinshpun SA; Mainelis G; Trunov M; Adhikari A; Reponen T; Willeke K
    Indoor Air; 2005 Aug; 15(4):235-45. PubMed ID: 15982270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical investigation on indoor environment decontamination after sneezing.
    Kumar S; King MD
    Environ Res; 2022 Oct; 213():113665. PubMed ID: 35714690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An investigation of air inlet velocity in simulating the dispersion of indoor contaminants via computational fluid dynamics.
    Lee E; Feigley CE; Khan J
    Ann Occup Hyg; 2002 Nov; 46(8):701-12. PubMed ID: 12406864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Computational Fluid Dynamics (CFD) Dispersion Parameters in the Development of a New DPI Actuated with Low Air Volumes.
    Longest W; Farkas D; Bass K; Hindle M
    Pharm Res; 2019 May; 36(8):110. PubMed ID: 31139939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dispersion of sneeze droplets in a meat facility indoor environment - Without partitions.
    Kumar S; Klassen M; Klassen D; Hardin R; King MD
    Environ Res; 2023 Nov; 236(Pt 1):116603. PubMed ID: 37454802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implications on dose estimation and dispersion patterns of thoron in a typical indoor environment.
    Devi V; Chauhan RP
    Radiat Environ Biophys; 2021 May; 60(2):309-316. PubMed ID: 33689025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical modeling of sneeze airflow and its validation with an experimental dataset.
    Oh W; Ooka R; Kikumoto H; Han M
    Indoor Air; 2022 Nov; 32(11):e13171. PubMed ID: 36437664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Efficiency Nose-to-Lung Aerosol Delivery in an Infant: Development of a Validated Computational Fluid Dynamics Method.
    Bass K; Boc S; Hindle M; Dodson K; Longest W
    J Aerosol Med Pulm Drug Deliv; 2019 Jun; 32(3):132-148. PubMed ID: 30556777
    [No Abstract]   [Full Text] [Related]  

  • 11. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling.
    Vulović A; Šušteršič T; Cvijić S; Ibrić S; Filipović N
    Eur J Pharm Sci; 2018 Feb; 113():171-184. PubMed ID: 29054499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of indoor temperature on the velocity fields and airborne transmission of sneeze droplets: An experimental study and transient CFD modeling.
    Bahramian A; Mohammadi M; Ahmadi G
    Sci Total Environ; 2023 Feb; 858(Pt 2):159444. PubMed ID: 36252673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico investigation of sneezing in a full real human upper airway using computational fluid dynamics method.
    Mortazavy Beni H; Hassani K; Khorramymehr S
    Comput Methods Programs Biomed; 2019 Aug; 177():203-209. PubMed ID: 31319949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing zonal and CFD model predictions of isothermal indoor airflows to experimental data.
    Mora L; Gadgil AJ; Wurtz E
    Indoor Air; 2003 Jun; 13(2):77-85. PubMed ID: 12756000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of surgically produced aerosols in an operating room.
    Buchanan CR; Dunn-Rankin D
    Am Ind Hyg Assoc J; 1998 Jun; 59(6):393-402. PubMed ID: 9670469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room airflow studies using sonic anemometry.
    Wasiolek PT; Whicker JJ; Gong H; Rodgers JC
    Indoor Air; 1999 Jun; 9(2):125-33. PubMed ID: 10390937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of 220Rn gas concentration distribution on its transmission from a delay chamber: evolving a CFD-based uniformity index.
    Agarwal TK; Joshi M; Sahoo BK; Kanse SD; Sapra BK
    Radiat Prot Dosimetry; 2016 Mar; 168(4):546-52. PubMed ID: 26152566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse design of an indoor environment using a filter-based topology method with experimental verification.
    Zhao X; Shi Z; Chen Q
    Indoor Air; 2020 Sep; 30(5):1039-1051. PubMed ID: 32092184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward the development of an in silico human model for indoor environmental design.
    Ito K
    Proc Jpn Acad Ser B Phys Biol Sci; 2016; 92(7):185-203. PubMed ID: 27477455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.