These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 30841622)

  • 1. Real-Time Eyeblink Detector and Eye State Classifier for Virtual Reality (VR) Headsets (Head-Mounted Displays, HMDs).
    Alsaeedi N; Wloka D
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30841622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of virtual reality headset use on eye blinking and lipid layer thickness.
    Marshev V; Bolloc'h J; Pallamin N; de Bougrenet de la Tocnaye JL; Cochener B; Nourrit V
    J Fr Ophtalmol; 2021 Sep; 44(7):1029-1037. PubMed ID: 34045106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eye-Tracking for Clinical Ophthalmology with Virtual Reality (VR): A Case Study of the HTC Vive Pro Eye's Usability.
    Sipatchin A; Wahl S; Rifai K
    Healthcare (Basel); 2021 Feb; 9(2):. PubMed ID: 33572072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Omnidirectional Virtual Visual Acuity: A User-Centric Visual Clarity Metric for Virtual Reality Head-Mounted Displays and Environments.
    Wang J; Shi R; Li X; Wei Y; Liang HN
    IEEE Trans Vis Comput Graph; 2024 May; 30(5):2033-2043. PubMed ID: 38437113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal image quality of virtual reality head mounted displays.
    Zhao C; Kim AS; Beams R; Badano A
    Sci Rep; 2022 Nov; 12(1):20235. PubMed ID: 36424434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. User discomfort while using a virtual reality headset as a personal viewing system for text-intensive office tasks.
    Kim E; Shin G
    Ergonomics; 2021 Jul; 64(7):891-899. PubMed ID: 33357004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing eye-hand coordination between controller-mediated virtual reality, and a real-world object interaction task.
    Lavoie E; Hebert JS; Chapman CS
    J Vis; 2024 Feb; 24(2):9. PubMed ID: 38393742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Virtual Reality Head-Mounted Displays in Schools with Autistic Children: Views, Experiences, and Future Directions.
    Newbutt N; Bradley R; Conley I
    Cyberpsychol Behav Soc Netw; 2020 Jan; 23(1):23-33. PubMed ID: 31502866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An eye tracking based virtual reality system for use inside magnetic resonance imaging systems.
    Qian K; Arichi T; Price A; Dall'Orso S; Eden J; Noh Y; Rhode K; Burdet E; Neil M; Edwards AD; Hajnal JV
    Sci Rep; 2021 Aug; 11(1):16301. PubMed ID: 34381099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEG Movement Artifact Suppression in Interactive Virtual Reality.
    Tremmel C; Herff C; Krusienski DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4576-4579. PubMed ID: 31946883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a Classifier to Determine Factors Causing Cybersickness in Virtual Reality Environments.
    Garcia-Agundez A; Reuter C; Becker H; Konrad R; Caserman P; Miede A; Göbel S
    Games Health J; 2019 Dec; 8(6):439-444. PubMed ID: 31295007
    [No Abstract]   [Full Text] [Related]  

  • 12. Adaptive nasal bone remodeling secondary to chronic virtual reality headset use.
    Nasrollahi TS; Lee MK; Liu GC
    Am J Otolaryngol; 2022; 43(5):103587. PubMed ID: 35939985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eye Tracking in Virtual Reality.
    Anderson NC; Bischof WF; Kingstone A
    Curr Top Behav Neurosci; 2023; 65():73-100. PubMed ID: 36710302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and Calibration of an Eye-Tracking Fixation Identification Algorithm for Immersive Virtual Reality.
    Llanes-Jurado J; Marín-Morales J; Guixeres J; Alcañiz M
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32883026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eyeblink Detection in the Field: A Proof of Concept Study of Two Mobile Optical Eye-Trackers.
    Schweizer T; Wyss T; Gilgen-Ammann R
    Mil Med; 2022 Mar; 187(3-4):e404-e409. PubMed ID: 33564826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Case for Studying Naturalistic Eye and Head Movements in Virtual Environments.
    Callahan-Flintoft C; Barentine C; Touryan J; Ries AJ
    Front Psychol; 2021; 12():650693. PubMed ID: 35035362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new gyro-based method for quantifying eyelid motion.
    Marcelli E; Cavallari P; Frigerio A; Colletti G; Biglioli F; Fanti R; Plicchi G; Cercenelli L
    Int J Artif Organs; 2013 Mar; 36(3):195-202. PubMed ID: 23446763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of eye fatigue caused by head-mounted displays using eye-tracking.
    Wang Y; Zhai G; Chen S; Min X; Gao Z; Song X
    Biomed Eng Online; 2019 Nov; 18(1):111. PubMed ID: 31729983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blink detection robust to various facial poses.
    Lee WO; Lee EC; Park KR
    J Neurosci Methods; 2010 Nov; 193(2):356-72. PubMed ID: 20826183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An unsupervised eye blink artifact detection method for real-time electroencephalogram processing.
    Chang WD; Lim JH; Im CH
    Physiol Meas; 2016 Mar; 37(3):401-17. PubMed ID: 26888113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.