These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30841776)

  • 1. Polyvinylchloride surface with enhanced cell/bacterial adhesion-resistant and antibacterial functions.
    Almouse R; Wen X; Na S; Anderson G; Xie D
    J Biomater Appl; 2019 May; 33(10):1415-1426. PubMed ID: 30841776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coating polyvinylchloride surface for improved antifouling property.
    Wen X; Almousa R; Anderson G; Na S; Xie D
    J Biomater Sci Polym Ed; 2019 Mar; 30(4):322-336. PubMed ID: 30688167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface modification of polyurethane with a hydrophilic, antibacterial polymer for improved antifouling and antibacterial function.
    Xie D; Howard L; Almousa R
    J Biomater Appl; 2018 Sep; 33(3):340-351. PubMed ID: 30089433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hierarchical polymer brush coating with dual-function antibacterial capability.
    Yan S; Song L; Luan S; Xin Z; Du S; Shi H; Yuan S; Yang Y; Yin J
    Colloids Surf B Biointerfaces; 2017 Jan; 149():260-270. PubMed ID: 27770696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophoretic deposition of MgO nanoparticles imparts antibacterial properties to poly-L-lactic acid for orthopedic applications.
    Hickey DJ; Muthusamy D; Webster TJ
    J Biomed Mater Res A; 2017 Nov; 105(11):3136-3147. PubMed ID: 28782240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antiadhesive activity of ulvan polysaccharides covalently immobilized onto titanium surface.
    Gadenne V; Lebrun L; Jouenne T; Thebault P
    Colloids Surf B Biointerfaces; 2013 Dec; 112():229-36. PubMed ID: 23994748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of novel implants with self-antibacterial performance through in-situ growth of 1D ZnO nanowire.
    Wang W; Li TL; Wong HM; Chu PK; Kao RYT; Wu S; Leung FKL; Wong TM; To MKT; Cheung KMC; Yeung KWK
    Colloids Surf B Biointerfaces; 2016 May; 141():623-633. PubMed ID: 26918511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-immobilization of Palm and DNase I for the development of an effective anti-infective coating for catheter surfaces.
    Alves D; Magalhães A; Grzywacz D; Neubauer D; Kamysz W; Pereira MO
    Acta Biomater; 2016 Oct; 44():313-22. PubMed ID: 27514277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-fragmenting hyperbranched copolymers with hydrolysis-generating zwitterions for antifouling coatings.
    Mei L; Ai X; Ma C; Zhang G
    J Mater Chem B; 2020 Jul; 8(25):5434-5440. PubMed ID: 32530450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Introducing a semi-coated model to investigate antibacterial effects of biocompatible polymers on titanium surfaces.
    Winkel A; Dempwolf W; Gellermann E; Sluszniak M; Grade S; Heuer W; Eisenburger M; Menzel H; Stiesch M
    Int J Mol Sci; 2015 Feb; 16(2):4327-42. PubMed ID: 25690041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Special Issue: Antibacterial Materials and Coatings.
    Vasilev K; Cavallaro A; Zilm P
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29509673
    [No Abstract]   [Full Text] [Related]  

  • 12. Construction of Ag-incorporated coating on Ti substrates for inhibited bacterial growth and enhanced osteoblast response.
    Yuan Z; Liu P; Hao Y; Ding Y; Cai K
    Colloids Surf B Biointerfaces; 2018 Nov; 171():597-605. PubMed ID: 30099296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and surface modification of polyurethanes with chitosan for antibacterial properties.
    Kara F; Aksoy EA; Yuksekdag Z; Hasirci N; Aksoy S
    Carbohydr Polym; 2014 Nov; 112():39-47. PubMed ID: 25129714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophoretic deposition of colloidal particles on Mg with cytocompatibility, antibacterial performance, and corrosion resistance.
    Sun J; Zhu Y; Meng L; Chen P; Shi T; Liu X; Zheng Y
    Acta Biomater; 2016 Nov; 45():387-398. PubMed ID: 27615737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial activity of four cationic peptides immobilised to poly-hydroxyethylmethacrylate.
    Dutta D; Kumar N; D P Willcox M
    Biofouling; 2016; 32(4):429-38. PubMed ID: 26934297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface properties of polyurethanes modified by bioactive polysaccharide-based polyelectrolyte multilayers.
    Wang Y; Hong Q; Chen Y; Lian X; Xiong Y
    Colloids Surf B Biointerfaces; 2012 Dec; 100():77-83. PubMed ID: 22771524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate independent silver nanoparticle based antibacterial coatings.
    Taheri S; Cavallaro A; Christo SN; Smith LE; Majewski P; Barton M; Hayball JD; Vasilev K
    Biomaterials; 2014 May; 35(16):4601-9. PubMed ID: 24630091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hierarchical polymer brush coating with dual-function antibacterial capability.
    Yan S; Song L; Luan S; Xin Z; Du S; Shi H; Yuan S; Yang Y; Yin J
    Colloids Surf B Biointerfaces; 2017 Feb; 150():250-260. PubMed ID: 27839906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity.
    Gao G; Yu K; Kindrachuk J; Brooks DE; Hancock RE; Kizhakkedathu JN
    Biomacromolecules; 2011 Oct; 12(10):3715-27. PubMed ID: 21902171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, characterization and in vitro activity of a surface-attached antimicrobial cationic peptide.
    Chen R; Cole N; Willcox MD; Park J; Rasul R; Carter E; Kumar N
    Biofouling; 2009; 25(6):517-24. PubMed ID: 19408136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.