These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
394 related articles for article (PubMed ID: 30841867)
21. Use of predicted vital status to improve survival analysis of multidrug-resistant tuberculosis cohorts. Brooks MB; Keshavjee S; Gelmanova I; Zemlyanaya NA; Mitnick CD; Manjourides J BMC Med Res Methodol; 2018 Dec; 18(1):166. PubMed ID: 30537944 [TBL] [Abstract][Full Text] [Related]
22. Prediction model development of late-onset preeclampsia using machine learning-based methods. Jhee JH; Lee S; Park Y; Lee SE; Kim YA; Kang SW; Kwon JY; Park JT PLoS One; 2019; 14(8):e0221202. PubMed ID: 31442238 [TBL] [Abstract][Full Text] [Related]
23. Prediction of 30-Day All-Cause Readmissions in Patients Hospitalized for Heart Failure: Comparison of Machine Learning and Other Statistical Approaches. Frizzell JD; Liang L; Schulte PJ; Yancy CW; Heidenreich PA; Hernandez AF; Bhatt DL; Fonarow GC; Laskey WK JAMA Cardiol; 2017 Feb; 2(2):204-209. PubMed ID: 27784047 [TBL] [Abstract][Full Text] [Related]
24. Dementia risk prediction in individuals with mild cognitive impairment: a comparison of Cox regression and machine learning models. Wang M; Greenberg M; Forkert ND; Chekouo T; Afriyie G; Ismail Z; Smith EE; Sajobi TT BMC Med Res Methodol; 2022 Nov; 22(1):284. PubMed ID: 36324086 [TBL] [Abstract][Full Text] [Related]
25. Assessment of Various Machine Learning Models for Peach Maturity Prediction Using Non-Destructive Sensor Data. Ljubobratović D; Vuković M; Brkić Bakarić M; Jemrić T; Matetić M Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957349 [TBL] [Abstract][Full Text] [Related]
26. Application of machine learning in predicting hospital readmissions: a scoping review of the literature. Huang Y; Talwar A; Chatterjee S; Aparasu RR BMC Med Res Methodol; 2021 May; 21(1):96. PubMed ID: 33952192 [TBL] [Abstract][Full Text] [Related]
27. Prediction of delayed graft function after kidney transplantation: comparison between logistic regression and machine learning methods. Decruyenaere A; Decruyenaere P; Peeters P; Vermassen F; Dhaene T; Couckuyt I BMC Med Inform Decis Mak; 2015 Oct; 15():83. PubMed ID: 26466993 [TBL] [Abstract][Full Text] [Related]
28. What drives performance in machine learning models for predicting heart failure outcome? Gutman R; Aronson D; Caspi O; Shalit U Eur Heart J Digit Health; 2023 May; 4(3):175-187. PubMed ID: 37265860 [TBL] [Abstract][Full Text] [Related]
29. NCC-AUC: an AUC optimization method to identify multi-biomarker panel for cancer prognosis from genomic and clinical data. Zou M; Liu Z; Zhang XS; Wang Y Bioinformatics; 2015 Oct; 31(20):3330-8. PubMed ID: 26092859 [TBL] [Abstract][Full Text] [Related]
30. Comparison of survival predictions for rats with hemorrhagic shocks using an artificial neural network and support vector machine. Jang KH; Yoo TK; Choi JY; Nam KC; Choi JL; Kwon MK; Kim DW Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():91-4. PubMed ID: 22254258 [TBL] [Abstract][Full Text] [Related]
31. Predictive Abilities of Machine Learning Techniques May Be Limited by Dataset Characteristics: Insights From the UNOS Database. Miller PE; Pawar S; Vaccaro B; McCullough M; Rao P; Ghosh R; Warier P; Desai NR; Ahmad T J Card Fail; 2019 Jun; 25(6):479-483. PubMed ID: 30738152 [TBL] [Abstract][Full Text] [Related]
32. Outcome risk model development for heterogeneity of treatment effect analyses: a comparison of non-parametric machine learning methods and semi-parametric statistical methods. Xu E; Vanghelof J; Wang Y; Patel A; Furst J; Raicu DS; Neumann JT; Wolfe R; Gao CX; McNeil JJ; Shah RC; Tchoua R BMC Med Res Methodol; 2024 Jul; 24(1):158. PubMed ID: 39044195 [TBL] [Abstract][Full Text] [Related]
33. CT Texture Analysis and Machine Learning Improve Post-ablation Prognostication in Patients with Adrenal Metastases: A Proof of Concept. Daye D; Staziaki PV; Furtado VF; Tabari A; Fintelmann FJ; Frenk NE; Shyn P; Tuncali K; Silverman S; Arellano R; Gee MS; Uppot RN Cardiovasc Intervent Radiol; 2019 Dec; 42(12):1771-1776. PubMed ID: 31489473 [TBL] [Abstract][Full Text] [Related]
34. Comparison between logistic regression and machine learning algorithms on survival prediction of traumatic brain injuries. Feng JZ; Wang Y; Peng J; Sun MW; Zeng J; Jiang H J Crit Care; 2019 Dec; 54():110-116. PubMed ID: 31408805 [TBL] [Abstract][Full Text] [Related]
35. Fetal health status prediction based on maternal clinical history using machine learning techniques. Akbulut A; Ertugrul E; Topcu V Comput Methods Programs Biomed; 2018 Sep; 163():87-100. PubMed ID: 30119860 [TBL] [Abstract][Full Text] [Related]
36. Compare the performance of multiple binary classification models in microbial high-throughput sequencing datasets. Xu N; Zhang Z; Shen Y; Zhang Q; Liu Z; Yu Y; Wang Y; Lei C; Ke M; Qiu D; Lu T; Chen Y; Xiong J; Qian H Sci Total Environ; 2022 Sep; 837():155807. PubMed ID: 35537509 [TBL] [Abstract][Full Text] [Related]
37. Enhancing SVM for survival data using local invariances and weighting. Sanz H; Reverter F; Valim C BMC Bioinformatics; 2020 May; 21(1):193. PubMed ID: 32429884 [TBL] [Abstract][Full Text] [Related]
38. Clinical risk prediction with random forests for survival, longitudinal, and multivariate (RF-SLAM) data analysis. Wongvibulsin S; Wu KC; Zeger SL BMC Med Res Methodol; 2019 Dec; 20(1):1. PubMed ID: 31888507 [TBL] [Abstract][Full Text] [Related]
39. Sample size and predictive performance of machine learning methods with survival data: A simulation study. Infante G; Miceli R; Ambrogi F Stat Med; 2023 Dec; 42(30):5657-5675. PubMed ID: 37947168 [TBL] [Abstract][Full Text] [Related]
40. Predicting post-stroke pneumonia using deep neural network approaches. Ge Y; Wang Q; Wang L; Wu H; Peng C; Wang J; Xu Y; Xiong G; Zhang Y; Yi Y Int J Med Inform; 2019 Dec; 132():103986. PubMed ID: 31629312 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]