These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 30841867)

  • 41. Feature selection and transformation by machine learning reduce variable numbers and improve prediction for heart failure readmission or death.
    Awan SE; Bennamoun M; Sohel F; Sanfilippo FM; Chow BJ; Dwivedi G
    PLoS One; 2019; 14(6):e0218760. PubMed ID: 31242238
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Advancing In-Hospital Clinical Deterioration Prediction Models.
    Jeffery AD; Dietrich MS; Fabbri D; Kennedy B; Novak LL; Coco J; Mion LC
    Am J Crit Care; 2018 Sep; 27(5):381-391. PubMed ID: 30173171
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A multicenter random forest model for effective prognosis prediction in collaborative clinical research network.
    Li J; Tian Y; Zhu Y; Zhou T; Li J; Ding K; Li J
    Artif Intell Med; 2020 Mar; 103():101814. PubMed ID: 32143809
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prediction of lung cancer patient survival via supervised machine learning classification techniques.
    Lynch CM; Abdollahi B; Fuqua JD; de Carlo AR; Bartholomai JA; Balgemann RN; van Berkel VH; Frieboes HB
    Int J Med Inform; 2017 Dec; 108():1-8. PubMed ID: 29132615
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms.
    Maniruzzaman M; Jahanur Rahman M; Ahammed B; Abedin MM; Suri HS; Biswas M; El-Baz A; Bangeas P; Tsoulfas G; Suri JS
    Comput Methods Programs Biomed; 2019 Jul; 176():173-193. PubMed ID: 31200905
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assessment of performance of survival prediction models for cancer prognosis.
    Chen HC; Kodell RL; Cheng KF; Chen JJ
    BMC Med Res Methodol; 2012 Jul; 12():102. PubMed ID: 22824262
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An intelligent warning model for early prediction of cardiac arrest in sepsis patients.
    Layeghian Javan S; Sepehri MM; Layeghian Javan M; Khatibi T
    Comput Methods Programs Biomed; 2019 Sep; 178():47-58. PubMed ID: 31416562
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Machine Learning Readmission Risk Modeling: A Pediatric Case Study.
    Wolff P; Graña M; Ríos SA; Yarza MB
    Biomed Res Int; 2019; 2019():8532892. PubMed ID: 31139655
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prediction models for high risk of suicide in Korean adolescents using machine learning techniques.
    Jung JS; Park SJ; Kim EY; Na KS; Kim YJ; Kim KG
    PLoS One; 2019; 14(6):e0217639. PubMed ID: 31170212
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A comparative study on feature selection for a risk prediction model for colorectal cancer.
    Cueto-López N; García-Ordás MT; Dávila-Batista V; Moreno V; Aragonés N; Alaiz-Rodríguez R
    Comput Methods Programs Biomed; 2019 Aug; 177():219-229. PubMed ID: 31319951
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Machine learning models in breast cancer survival prediction.
    Montazeri M; Montazeri M; Montazeri M; Beigzadeh A
    Technol Health Care; 2016; 24(1):31-42. PubMed ID: 26409558
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China.
    Wang Y; Wu X; Chen Z; Ren F; Feng L; Du Q
    Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30696105
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing (FIT) project.
    Sakr S; Elshawi R; Ahmed AM; Qureshi WT; Brawner CA; Keteyian SJ; Blaha MJ; Al-Mallah MH
    BMC Med Inform Decis Mak; 2017 Dec; 17(1):174. PubMed ID: 29258510
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Block Forests: random forests for blocks of clinical and omics covariate data.
    Hornung R; Wright MN
    BMC Bioinformatics; 2019 Jun; 20(1):358. PubMed ID: 31248362
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Extreme learning machine Cox model for high-dimensional survival analysis.
    Wang H; Li G
    Stat Med; 2019 May; 38(12):2139-2156. PubMed ID: 30632193
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Extreme Gradient Boosting Model Has a Better Performance in Predicting the Risk of 90-Day Readmissions in Patients with Ischaemic Stroke.
    Xu Y; Yang X; Huang H; Peng C; Ge Y; Wu H; Wang J; Xiong G; Yi Y
    J Stroke Cerebrovasc Dis; 2019 Dec; 28(12):104441. PubMed ID: 31627995
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A machine learning approach to predict early outcomes after pituitary adenoma surgery.
    Hollon TC; Parikh A; Pandian B; Tarpeh J; Orringer DA; Barkan AL; McKean EL; Sullivan SE
    Neurosurg Focus; 2018 Nov; 45(5):E8. PubMed ID: 30453460
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Use of machine learning to predict early biochemical recurrence after robot-assisted prostatectomy.
    Wong NC; Lam C; Patterson L; Shayegan B
    BJU Int; 2019 Jan; 123(1):51-57. PubMed ID: 29969172
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Prediction of coronary heart disease in gout patients using machine learning models.
    Jiang L; Chen S; Wu Y; Zhou D; Duan L
    Math Biosci Eng; 2023 Jan; 20(3):4574-4591. PubMed ID: 36896513
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.