These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. A multicenter random forest model for effective prognosis prediction in collaborative clinical research network. Li J; Tian Y; Zhu Y; Zhou T; Li J; Ding K; Li J Artif Intell Med; 2020 Mar; 103():101814. PubMed ID: 32143809 [TBL] [Abstract][Full Text] [Related]
44. Prediction of lung cancer patient survival via supervised machine learning classification techniques. Lynch CM; Abdollahi B; Fuqua JD; de Carlo AR; Bartholomai JA; Balgemann RN; van Berkel VH; Frieboes HB Int J Med Inform; 2017 Dec; 108():1-8. PubMed ID: 29132615 [TBL] [Abstract][Full Text] [Related]
45. Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms. Maniruzzaman M; Jahanur Rahman M; Ahammed B; Abedin MM; Suri HS; Biswas M; El-Baz A; Bangeas P; Tsoulfas G; Suri JS Comput Methods Programs Biomed; 2019 Jul; 176():173-193. PubMed ID: 31200905 [TBL] [Abstract][Full Text] [Related]
46. Assessment of performance of survival prediction models for cancer prognosis. Chen HC; Kodell RL; Cheng KF; Chen JJ BMC Med Res Methodol; 2012 Jul; 12():102. PubMed ID: 22824262 [TBL] [Abstract][Full Text] [Related]
47. An intelligent warning model for early prediction of cardiac arrest in sepsis patients. Layeghian Javan S; Sepehri MM; Layeghian Javan M; Khatibi T Comput Methods Programs Biomed; 2019 Sep; 178():47-58. PubMed ID: 31416562 [TBL] [Abstract][Full Text] [Related]
48. Machine Learning Readmission Risk Modeling: A Pediatric Case Study. Wolff P; Graña M; Ríos SA; Yarza MB Biomed Res Int; 2019; 2019():8532892. PubMed ID: 31139655 [TBL] [Abstract][Full Text] [Related]
49. Prediction models for high risk of suicide in Korean adolescents using machine learning techniques. Jung JS; Park SJ; Kim EY; Na KS; Kim YJ; Kim KG PLoS One; 2019; 14(6):e0217639. PubMed ID: 31170212 [TBL] [Abstract][Full Text] [Related]
50. A comparative study on feature selection for a risk prediction model for colorectal cancer. Cueto-López N; García-Ordás MT; Dávila-Batista V; Moreno V; Aragonés N; Alaiz-Rodríguez R Comput Methods Programs Biomed; 2019 Aug; 177():219-229. PubMed ID: 31319951 [TBL] [Abstract][Full Text] [Related]
51. Machine learning models in breast cancer survival prediction. Montazeri M; Montazeri M; Montazeri M; Beigzadeh A Technol Health Care; 2016; 24(1):31-42. PubMed ID: 26409558 [TBL] [Abstract][Full Text] [Related]
52. Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China. Wang Y; Wu X; Chen Z; Ren F; Feng L; Du Q Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30696105 [TBL] [Abstract][Full Text] [Related]
53. Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing (FIT) project. Sakr S; Elshawi R; Ahmed AM; Qureshi WT; Brawner CA; Keteyian SJ; Blaha MJ; Al-Mallah MH BMC Med Inform Decis Mak; 2017 Dec; 17(1):174. PubMed ID: 29258510 [TBL] [Abstract][Full Text] [Related]
54. Block Forests: random forests for blocks of clinical and omics covariate data. Hornung R; Wright MN BMC Bioinformatics; 2019 Jun; 20(1):358. PubMed ID: 31248362 [TBL] [Abstract][Full Text] [Related]
55. Extreme learning machine Cox model for high-dimensional survival analysis. Wang H; Li G Stat Med; 2019 May; 38(12):2139-2156. PubMed ID: 30632193 [TBL] [Abstract][Full Text] [Related]
56. Extreme Gradient Boosting Model Has a Better Performance in Predicting the Risk of 90-Day Readmissions in Patients with Ischaemic Stroke. Xu Y; Yang X; Huang H; Peng C; Ge Y; Wu H; Wang J; Xiong G; Yi Y J Stroke Cerebrovasc Dis; 2019 Dec; 28(12):104441. PubMed ID: 31627995 [TBL] [Abstract][Full Text] [Related]
57. A machine learning approach to predict early outcomes after pituitary adenoma surgery. Hollon TC; Parikh A; Pandian B; Tarpeh J; Orringer DA; Barkan AL; McKean EL; Sullivan SE Neurosurg Focus; 2018 Nov; 45(5):E8. PubMed ID: 30453460 [TBL] [Abstract][Full Text] [Related]
58. Use of machine learning to predict early biochemical recurrence after robot-assisted prostatectomy. Wong NC; Lam C; Patterson L; Shayegan B BJU Int; 2019 Jan; 123(1):51-57. PubMed ID: 29969172 [TBL] [Abstract][Full Text] [Related]
59. Prediction of coronary heart disease in gout patients using machine learning models. Jiang L; Chen S; Wu Y; Zhou D; Duan L Math Biosci Eng; 2023 Jan; 20(3):4574-4591. PubMed ID: 36896513 [TBL] [Abstract][Full Text] [Related]