These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 30841961)
1. Xu H; Luo D; Gao X; Liu X; Wang Q; Sun A; Shen J; He R; Lu G; Li K; Zhang J; Xiao L J Biomed Nanotechnol; 2019 Apr; 15(4):662-673. PubMed ID: 30841961 [TBL] [Abstract][Full Text] [Related]
2. [Genome-editing: focus on the off-target effects]. He X; Gu F Sheng Wu Gong Cheng Xue Bao; 2017 Oct; 33(10):1757-1775. PubMed ID: 29082723 [TBL] [Abstract][Full Text] [Related]
3. Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Mashimo T Dev Growth Differ; 2014 Jan; 56(1):46-52. PubMed ID: 24372523 [TBL] [Abstract][Full Text] [Related]
4. CRISPR-Cas System: History and Prospects as a Genome Editing Tool in Microorganisms. Javed MR; Sadaf M; Ahmed T; Jamil A; Nawaz M; Abbas H; Ijaz A Curr Microbiol; 2018 Dec; 75(12):1675-1683. PubMed ID: 30078067 [TBL] [Abstract][Full Text] [Related]
5. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Gene Editing Technique in Xenotransplantation. Naeimi Kararoudi M; Hejazi SS; Elmas E; Hellström M; Naeimi Kararoudi M; Padma AM; Lee D; Dolatshad H Front Immunol; 2018; 9():1711. PubMed ID: 30233563 [TBL] [Abstract][Full Text] [Related]
6. Advances in the Engineering of the Gene Editing Enzymes and the Genomes: Understanding and Handling the Off-Target Effects of CRISPR/Cas9. Yin Y; Wang Q; Xiao L; Wang F; Song Z; Zhou C; Liu X; Xing C; He N; Li K; Feng Y; Zhang J J Biomed Nanotechnol; 2018 Mar; 14(3):456-476. PubMed ID: 29663920 [TBL] [Abstract][Full Text] [Related]
7. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research]. Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746 [TBL] [Abstract][Full Text] [Related]
8. A beginner's guide to gene editing. Harrison PT; Hart S Exp Physiol; 2018 Apr; 103(4):439-448. PubMed ID: 29282799 [TBL] [Abstract][Full Text] [Related]
9. Genome editing: the road of CRISPR/Cas9 from bench to clinic. Eid A; Mahfouz MM Exp Mol Med; 2016 Oct; 48(10):e265. PubMed ID: 27741224 [TBL] [Abstract][Full Text] [Related]
10. A comprehensive overview of computational resources to aid in precision genome editing with engineered nucleases. Periwal V Brief Bioinform; 2017 Jul; 18(4):698-711. PubMed ID: 27373734 [TBL] [Abstract][Full Text] [Related]
11. Genome Editing in Stem Cells for Disease Therapeutics. Song M; Ramakrishna S Mol Biotechnol; 2018 Apr; 60(4):329-338. PubMed ID: 29516417 [TBL] [Abstract][Full Text] [Related]
12. Genome Editing and Its Applications in Model Organisms. Ma D; Liu F Genomics Proteomics Bioinformatics; 2015 Dec; 13(6):336-44. PubMed ID: 26762955 [TBL] [Abstract][Full Text] [Related]
13. The genome editing revolution: A CRISPR-Cas TALE off-target story. Stella S; Montoya G Bioessays; 2016 Jul; 38 Suppl 1():S4-S13. PubMed ID: 27417121 [TBL] [Abstract][Full Text] [Related]
14. [Application of clustered regularly interspaced short palindromic repeats- associated protein 9 gene editing technology for treatment of HBV infection]. Wang YD; Liang QF; Li ZY; Zhao CY Zhonghua Gan Zang Bing Za Zhi; 2018 Nov; 26(11):860-864. PubMed ID: 30616324 [TBL] [Abstract][Full Text] [Related]
15. Gene editing for cell engineering: trends and applications. Gupta SK; Shukla P Crit Rev Biotechnol; 2017 Aug; 37(5):672-684. PubMed ID: 27535623 [TBL] [Abstract][Full Text] [Related]
16. CRISPR/Cas9-Based Genome Editing in Plants. Zhang Y; Ma X; Xie X; Liu YG Prog Mol Biol Transl Sci; 2017; 149():133-150. PubMed ID: 28712494 [TBL] [Abstract][Full Text] [Related]
17. Genomic editing opens new avenues for zebrafish as a model for neurodegeneration. Schmid B; Haass C J Neurochem; 2013 Nov; 127(4):461-70. PubMed ID: 24117801 [TBL] [Abstract][Full Text] [Related]
18. A Single-Molecule View of Genome Editing Proteins: Biophysical Mechanisms for TALEs and CRISPR/Cas9. Cuculis L; Schroeder CM Annu Rev Chem Biomol Eng; 2017 Jun; 8():577-597. PubMed ID: 28489428 [TBL] [Abstract][Full Text] [Related]
19. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice. Xu R; Wei P; Yang J Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567 [TBL] [Abstract][Full Text] [Related]
20. Generating a Genome Editing Nuclease for Targeted Mutagenesis in Human Cells. He Z; Kee K Methods Mol Biol; 2017; 1498():153-162. PubMed ID: 27709574 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]