BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 30842209)

  • 1. Redundant and Cryptic Enhancer Activities of the
    Kalay G; Lachowiec J; Rosas U; Dome MR; Wittkopp P
    Genetics; 2019 May; 212(1):343-360. PubMed ID: 30842209
    [No Abstract]   [Full Text] [Related]  

  • 2. Nomadic enhancers: tissue-specific cis-regulatory elements of yellow have divergent genomic positions among Drosophila species.
    Kalay G; Wittkopp PJ
    PLoS Genet; 2010 Nov; 6(11):e1001222. PubMed ID: 21151964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential Direct Regulators of the Drosophila yellow Gene Identified by Yeast One-Hybrid and RNAi Screens.
    Kalay G; Lusk R; Dome M; Hens K; Deplancke B; Wittkopp PJ
    G3 (Bethesda); 2016 Oct; 6(10):3419-3430. PubMed ID: 27527791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of yellow gene regulation and pigmentation in Drosophila.
    Wittkopp PJ; Vaccaro K; Carroll SB
    Curr Biol; 2002 Sep; 12(18):1547-56. PubMed ID: 12372246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gain of cis-regulatory activities underlies novel domains of wingless gene expression in Drosophila.
    Koshikawa S; Giorgianni MW; Vaccaro K; Kassner VA; Yoder JH; Werner T; Carroll SB
    Proc Natl Acad Sci U S A; 2015 Jun; 112(24):7524-9. PubMed ID: 26034272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The function and regulation of Ultrabithorax in the legs of Drosophila melanogaster.
    Davis GK; Srinivasan DG; Wittkopp PJ; Stern DL
    Dev Biol; 2007 Aug; 308(2):621-31. PubMed ID: 17640629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancer modularity and the evolution of new traits.
    Koshikawa S
    Fly (Austin); 2015; 9(4):155-9. PubMed ID: 26925592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diverse Cis-Regulatory Mechanisms Contribute to Expression Evolution of Tandem Gene Duplicates.
    Baudouin-Gonzalez L; Santos MA; Tempesta C; Sucena É; Roch F; Tanaka K
    Mol Biol Evol; 2017 Dec; 34(12):3132-3147. PubMed ID: 28961967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Widespread cis- and trans-regulatory evolution underlies the origin, diversification, and loss of a sexually dimorphic fruit fly pigmentation trait.
    Hughes JT; Williams ME; Rebeiz M; Williams TM
    J Exp Zool B Mol Dev Evol; 2023 Mar; 340(2):143-161. PubMed ID: 34254440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in locus wide repression underlie the evolution of Drosophila abdominal pigmentation.
    Méndez-González ID; Williams TM; Rebeiz M
    PLoS Genet; 2023 May; 19(5):e1010722. PubMed ID: 37134121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila.
    Gompel N; Prud'homme B; Wittkopp PJ; Kassner VA; Carroll SB
    Nature; 2005 Feb; 433(7025):481-7. PubMed ID: 15690032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. cis-regulatory analysis of the Drosophila pdm locus reveals a diversity of neural enhancers.
    Ross J; Kuzin A; Brody T; Odenwald WF
    BMC Genomics; 2015 Sep; 16(1):700. PubMed ID: 26377945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex patterns of cis-regulatory polymorphisms in ebony underlie standing pigmentation variation in Drosophila melanogaster.
    Miyagi R; Akiyama N; Osada N; Takahashi A
    Mol Ecol; 2015 Dec; 24(23):5829-41. PubMed ID: 26503353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stepwise modification of a modular enhancer underlies adaptation in a Drosophila population.
    Rebeiz M; Pool JE; Kassner VA; Aquadro CF; Carroll SB
    Science; 2009 Dec; 326(5960):1663-7. PubMed ID: 20019281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative genome-wide enhancer activity maps for five Drosophila species show functional enhancer conservation and turnover during cis-regulatory evolution.
    Arnold CD; Gerlach D; Spies D; Matts JA; Sytnikova YA; Pagani M; Lau NC; Stark A
    Nat Genet; 2014 Jul; 46(7):685-92. PubMed ID: 24908250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct regulation of knot gene expression by Ultrabithorax and the evolution of cis-regulatory elements in Drosophila.
    Hersh BM; Carroll SB
    Development; 2005 Apr; 132(7):1567-77. PubMed ID: 15753212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary origin of a novel gene expression pattern through co-option of the latent activities of existing regulatory sequences.
    Rebeiz M; Jikomes N; Kassner VA; Carroll SB
    Proc Natl Acad Sci U S A; 2011 Jun; 108(25):10036-43. PubMed ID: 21593416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancer evolutionary co-option through shared chromatin accessibility input.
    Xin Y; Le Poul Y; Ling L; Museridze M; Mühling B; Jaenichen R; Osipova E; Gompel N
    Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20636-20644. PubMed ID: 32778581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancer architecture and chromatin accessibility constrain phenotypic space during Drosophila development.
    Galupa R; Alvarez-Canales G; Borst NO; Fuqua T; Gandara L; Misunou N; Richter K; Alves MRP; Karumbi E; Perkins ML; Kocijan T; Rushlow CA; Crocker J
    Dev Cell; 2023 Jan; 58(1):51-62.e4. PubMed ID: 36626871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conserved regulatory architecture underlies parallel genetic changes and convergent phenotypic evolution.
    Frankel N; Wang S; Stern DL
    Proc Natl Acad Sci U S A; 2012 Dec; 109(51):20975-9. PubMed ID: 23197832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.