BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

511 related articles for article (PubMed ID: 30842272)

  • 1. Aggregate Filamentous Growth Responses in Yeast.
    Chow J; Dionne HM; Prabhakar A; Mehrotra A; Somboonthum J; Gonzalez B; Edgerton M; Cullen PJ
    mSphere; 2019 Mar; 4(2):. PubMed ID: 30842272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Filamentation Regulatory Pathways Control Adhesion-Dependent Surface Responses in Yeast.
    Chow J; Starr I; Jamalzadeh S; Muniz O; Kumar A; Gokcumen O; Ferkey DM; Cullen PJ
    Genetics; 2019 Jul; 212(3):667-690. PubMed ID: 31053593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Candida albicans INT1-induced filamentation in Saccharomyces cerevisiae depends on Sla2p.
    Asleson CM; Bensen ES; Gale CA; Melms AS; Kurischko C; Berman J
    Mol Cell Biol; 2001 Feb; 21(4):1272-84. PubMed ID: 11158313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signaling through Lrg1, Rho1 and Pkc1 Governs Candida albicans Morphogenesis in Response to Diverse Cues.
    Xie JL; Grahl N; Sless T; Leach MD; Kim SH; Hogan DA; Robbins N; Cowen LE
    PLoS Genet; 2016 Oct; 12(10):e1006405. PubMed ID: 27788136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecological inducers of the yeast filamentous growth pathway reveal environment-dependent roles for pathway components.
    Vandermeulen MD; Cullen PJ
    mSphere; 2023 Oct; 8(5):e0028423. PubMed ID: 37732804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global gene deletion analysis exploring yeast filamentous growth.
    Ryan O; Shapiro RS; Kurat CF; Mayhew D; Baryshnikova A; Chin B; Lin ZY; Cox MJ; Vizeacoumar F; Cheung D; Bahr S; Tsui K; Tebbji F; Sellam A; Istel F; Schwarzmüller T; Reynolds TB; Kuchler K; Gifford DK; Whiteway M; Giaever G; Nislow C; Costanzo M; Gingras AC; Mitra RD; Andrews B; Fink GR; Cowen LE; Boone C
    Science; 2012 Sep; 337(6100):1353-6. PubMed ID: 22984072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyphal guidance and invasive growth in Candida albicans require the Ras-like GTPase Rsr1p and its GTPase-activating protein Bud2p.
    Hausauer DL; Gerami-Nejad M; Kistler-Anderson C; Gale CA
    Eukaryot Cell; 2005 Jul; 4(7):1273-86. PubMed ID: 16002653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of pseudohyphae formation in Saccharomyces cerevisiae.
    Gancedo JM
    FEMS Microbiol Rev; 2001 Jan; 25(1):107-23. PubMed ID: 11152942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functions for Cdc42p BEM adaptors in regulating a differentiation-type MAP kinase pathway.
    Basu S; González B; Li B; Kimble G; Kozminski KG; Cullen PJ
    Mol Biol Cell; 2020 Mar; 31(6):491-510. PubMed ID: 31940256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Staurosporine Induces Filamentation in the Human Fungal Pathogen
    Xie JL; O'Meara TR; Polvi EJ; Robbins N; Cowen LE
    mSphere; 2017; 2(2):. PubMed ID: 28261668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Aspects of Invasive Growth Regulation Identified by Functional Profiling of MAPK Pathway Targets in
    Vandermeulen MD; Cullen PJ
    Genetics; 2020 Sep; 216(1):95-116. PubMed ID: 32665277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarized growth in fungi: symmetry breaking and hyphal formation.
    Arkowitz RA; Bassilana M
    Semin Cell Dev Biol; 2011 Oct; 22(8):806-15. PubMed ID: 21906692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spt3 plays opposite roles in filamentous growth in Saccharomyces cerevisiae and Candida albicans and is required for C. albicans virulence.
    Laprade L; Boyartchuk VL; Dietrich WF; Winston F
    Genetics; 2002 Jun; 161(2):509-19. PubMed ID: 12072450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Osh3, an oxysterol-binding protein, in filamentous growth of Saccharomyces cerevisiae and Candida albicans.
    Hur HS; Ryu JH; Kim KH; Kim J
    J Microbiol; 2006 Oct; 44(5):523-9. PubMed ID: 17082746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Germ tube growth of Candida albicans.
    Gow NA
    Curr Top Med Mycol; 1997 Dec; 8(1-2):43-55. PubMed ID: 9504066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The metabolic basis of Candida albicans morphogenesis and quorum sensing.
    Han TL; Cannon RD; Villas-Bôas SG
    Fungal Genet Biol; 2011 Aug; 48(8):747-63. PubMed ID: 21513811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of mat responses by a differentiation MAPK pathway in Saccharomyces cerevisiae.
    Karunanithi S; Joshi J; Chavel C; Birkaya B; Grell L; Cullen PJ
    PLoS One; 2012; 7(4):e32294. PubMed ID: 22496730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Messenger RNA transport in the opportunistic fungal pathogen Candida albicans.
    McBride AE
    Curr Genet; 2017 Dec; 63(6):989-995. PubMed ID: 28512683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Candida albicans chaperonin subunit (CaCct8p) as a suppressor of morphogenesis and Ras phenotypes in C. albicans and Saccharomyces cerevisiae.
    Rademacher F; Kehren V; Stoldt VR; Ernst JF
    Microbiology (Reading); 1998 Nov; 144 ( Pt 11)():2951-2960. PubMed ID: 9846730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Candida albicans: adherence, signaling and virulence.
    Calderone R; Suzuki S; Cannon R; Cho T; Boyd D; Calera J; Chibana H; Herman D; Holmes A; Jeng HW; Kaminishi H; Matsumoto T; Mikami T; O'Sullivan JM; Sudoh M; Suzuki M; Nakashima Y; Tanaka T; Tompkins GR; Watanabe T
    Med Mycol; 2000; 38 Suppl 1():125-37. PubMed ID: 11204138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.