BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 30842853)

  • 1. Cargo shuttling by electrochemical switching of core-shell microgels obtained by a facile one-shot polymerization.
    Mergel O; Schneider S; Tiwari R; Kühn PT; Keskin D; Stuart MCA; Schöttner S; de Kanter M; Noyong M; Caumanns T; Mayer J; Janzen C; Simon U; Gallei M; Wöll D; van Rijn P; Plamper FA
    Chem Sci; 2019 Feb; 10(6):1844-1856. PubMed ID: 30842853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer dynamics in responsive microgels: influence of cononsolvency and microgel architecture.
    Scherzinger C; Holderer O; Richter D; Richtering W
    Phys Chem Chem Phys; 2012 Feb; 14(8):2762-8. PubMed ID: 22252036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An anionic shell shields a cationic core allowing for uptake and release of polyelectrolytes within core-shell responsive microgels.
    Gelissen APH; Scotti A; Turnhoff SK; Janssen C; Radulescu A; Pich A; Rudov AA; Potemkin II; Richtering W
    Soft Matter; 2018 May; 14(21):4287-4299. PubMed ID: 29774926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional Microgels and Microgel Systems.
    Plamper FA; Richtering W
    Acc Chem Res; 2017 Feb; 50(2):131-140. PubMed ID: 28186408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microgels: From responsive polymer colloids to biomaterials.
    Saunders BR; Laajam N; Daly E; Teow S; Hu X; Stepto R
    Adv Colloid Interface Sci; 2009; 147-148():251-62. PubMed ID: 18809173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of architecture on the interaction of negatively charged multisensitive poly(N-isopropylacrylamide)-co-methacrylic acid microgels with oppositely charged polyelectrolyte: absorption vs adsorption.
    Kleinen J; Klee A; Richtering W
    Langmuir; 2010 Jul; 26(13):11258-65. PubMed ID: 20377221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimuli-responsive poly(N-vinylcaprolactam-co-2-methoxyethyl acrylate) core-shell microgels: facile synthesis, modulation of surface properties and controlled internalisation into cells.
    Melle A; Balaceanu A; Kather M; Wu Y; Gau E; Sun W; Huang X; Shi X; Karperien M; Pich A
    J Mater Chem B; 2016 Aug; 4(30):5127-5137. PubMed ID: 32263510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of microgel architecture and oil polarity on stabilization of emulsions by stimuli-sensitive core-shell poly(N-isopropylacrylamide-co-methacrylic acid) microgels: Mickering versus Pickering behavior?
    Schmidt S; Liu T; Rütten S; Phan KH; Möller M; Richtering W
    Langmuir; 2011 Aug; 27(16):9801-6. PubMed ID: 21736380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-Controlled Catalysis by Core-Shell-Satellite AuAg@pNIPAM@Ag Hybrid Microgels: A Highly Efficient Catalytic Thermoresponsive Nanoreactor.
    Tzounis L; Doña M; Lopez-Romero JM; Fery A; Contreras-Caceres R
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):29360-29372. PubMed ID: 31329406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimuli-Responsive Zwitterionic Core-Shell Microgels for Antifouling Surface Coatings.
    Saha P; Santi M; Emondts M; Roth H; Rahimi K; Großkurth J; Ganguly R; Wessling M; Singha NK; Pich A
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):58223-58238. PubMed ID: 33331763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of cations on the sorting of oppositely charged microgels.
    Hou Y; Ye J; Wei X; Zhang G
    J Phys Chem B; 2009 May; 113(21):7457-61. PubMed ID: 19456173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the Swelling Properties of Smart Multiresponsive Core-Shell Microgels by Copolymerization.
    Brändel T; Dirksen M; Hellweg T
    Polymers (Basel); 2019 Jul; 11(8):. PubMed ID: 31370213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shell-corona microgels from double interpenetrating networks.
    Rudyak VY; Gavrilov AA; Kozhunova EY; Chertovich AV
    Soft Matter; 2018 Apr; 14(15):2777-2781. PubMed ID: 29633777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropic Hollow Microgels That Can Adapt Their Size, Shape, and Softness.
    Nickel AC; Scotti A; Houston JE; Ito T; Crassous J; Pedersen JS; Richtering W
    Nano Lett; 2019 Nov; 19(11):8161-8170. PubMed ID: 31613114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale Mechanical Properties of Core-Shell-like Poly-NIPAm Microgel Particles: Effect of Temperature and Cross-Linking Density.
    Li G; Varga I; Kardos A; Dobryden I; Claesson PM
    J Phys Chem B; 2021 Sep; 125(34):9860-9869. PubMed ID: 34428041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and properties of polyelectrolyte microgel particles.
    Nur H; Pinkrah VT; Mitchell JC; Benée LS; Snowden MJ
    Adv Colloid Interface Sci; 2010 Jul; 158(1-2):15-20. PubMed ID: 19712922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the structure of poly(N-isopropylacrylamide) microgel particles.
    Saunders BR
    Langmuir; 2004 May; 20(10):3925-32. PubMed ID: 15969381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(vinylpyridine) core/poly(N-isopropylacrylamide) shell microgel particles: their characterization and the uptake and release of an anionic surfactant.
    Bradley M; Vincent B
    Langmuir; 2008 Mar; 24(6):2421-5. PubMed ID: 18294014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational Design of Thermoresponsive Microgel Templates with Polydopamine Surface Coating for Microtissue Applications.
    Stengelin E; Nzigou Mombo B; Mondeshki M; Beltramo GL; Lange MA; Schmidt P; Frerichs H; Wegner SV; Seiffert S
    Macromol Biosci; 2021 Sep; 21(9):e2100209. PubMed ID: 34342150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoresponsive Poly(
    Echeverría C; Aragón-Gutiérrez A; Fernández-García M; Muñoz-Bonilla A; López D
    Polymers (Basel); 2019 Apr; 11(4):. PubMed ID: 30960590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.