These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 3084295)

  • 1. Pyruvate utilization by synaptosomes is independent of calcium.
    Kauppinen RA; Nicholls DG
    FEBS Lett; 1986 Apr; 199(2):222-6. PubMed ID: 3084295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interrelationships between glucose metabolism, energy state, and the cytosolic free calcium concentration in cortical synaptosomes from the guinea pig.
    Kauppinen RA; Taipale HT; Komulainen H
    J Neurochem; 1989 Sep; 53(3):766-71. PubMed ID: 2503588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic glycolysis and postanoxic recovery of respiration of rat cortical synaptosomes are reduced by synaptosomal sodium load.
    Gleitz J; Beile A; Khan S; Wilffert B; Tegtmeier F
    Brain Res; 1993 May; 611(2):286-94. PubMed ID: 8334522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depolarization of the mitochondrial membrane potential increases free cytosolic calcium in synaptosomes.
    Heinonen E; Akerman KE; Kaila K
    Neurosci Lett; 1984 Aug; 49(1-2):33-7. PubMed ID: 6493595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the exocytotic release of glutamate from guinea-pig cerebral cortical synaptosomes.
    Sanchez-Prieto J; Sihra TS; Nicholls DG
    J Neurochem; 1987 Jul; 49(1):58-64. PubMed ID: 2884280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptosomal bioenergetics. The role of glycolysis, pyruvate oxidation and responses to hypoglycaemia.
    Kauppinen RA; Nicholls DG
    Eur J Biochem; 1986 Jul; 158(1):159-65. PubMed ID: 2874024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionophore A23187, verapamil, protonophores, and veratridine influence the release of gamma-aminobutyric acid from synaptosomes by modulation of the plasma membrane potential rather than the cytosolic calcium.
    Sihra TS; Scott IG; Nicholls DG
    J Neurochem; 1984 Dec; 43(6):1624-30. PubMed ID: 6436439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of pyruvate in neuronal calcium homeostasis. Effects on intracellular calcium pools.
    Villalba M; Martínez-Serrano A; Gómez-Puertas P; Blanco P; Börner C; Villa A; Casado M; Giménez C; Pereira R; Bogonez E
    J Biol Chem; 1994 Jan; 269(4):2468-76. PubMed ID: 7507925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of calcium in synaptosomal substrate oxidation.
    Patel TB; Sambasivarao D; Rashed HM
    Arch Biochem Biophys; 1988 Aug; 264(2):368-75. PubMed ID: 3135779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of intracellular calcium in presynaptic nerve terminals.
    Blaustein MP; Ratzlaff RW; Schweitzer ES
    Fed Proc; 1980 Aug; 39(10):2790-5. PubMed ID: 6773813
    [No Abstract]   [Full Text] [Related]  

  • 11. Calcium buffering in presynaptic nerve terminals. Free calcium levels measured with arsenazo III.
    Schweitzer ES; Blaustein MP
    Biochim Biophys Acta; 1980 Aug; 600(3):912-21. PubMed ID: 6773574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence of a large Ca2+-independent release of glutamate during anoxia in isolated nerve terminals (synaptosomes).
    Sánchez-Prieto J; González P
    J Neurochem; 1988 Apr; 50(4):1322-4. PubMed ID: 2894412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP depletion increases Ca2+ uptake by synaptosomes.
    Akerman KE; Nicholls DG
    FEBS Lett; 1981 Nov; 135(1):212-4. PubMed ID: 7319036
    [No Abstract]   [Full Text] [Related]  

  • 14. Release of acetylcholine from rat brain synaptosomes by various agents in the absence of external calcium ions.
    Adam-Vizi V; Ligeti E
    J Physiol; 1984 Aug; 353():505-21. PubMed ID: 6090643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phorbol esters potentiate rapid dopamine release from median eminence and striatal synaptosomes.
    Shu C; Selmanoff M
    Endocrinology; 1988 Jun; 122(6):2699-709. PubMed ID: 3131121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of sodium-calcium exchange in regulation of intracellular calcium in nerve terminals.
    Sanchez-Armass S; Blaustein MP
    Am J Physiol; 1987 Jun; 252(6 Pt 1):C595-603. PubMed ID: 3109248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relation of acetylcholine release to Ca2+ uptake and intraterminal Ca2+ concentration in guinea-pig cortex synaptosomes.
    Adam-Vizi V; Ashley RH
    J Neurochem; 1987 Oct; 49(4):1013-21. PubMed ID: 3625199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasma membrane depolarization and disturbed Na+ homeostasis induced by the protonophore carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazon in isolated nerve terminals.
    Tretter L; Chinopoulos C; Adam-Vizi V
    Mol Pharmacol; 1998 Apr; 53(4):734-41. PubMed ID: 9547365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+ transport by intact synaptosomes: the voltage-dependent Ca2+ channel and a re-evaluation of the role of sodium/calcium exchange.
    Akerman KE; Nicholls DG
    Eur J Biochem; 1981 Jul; 117(3):491-7. PubMed ID: 6269842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryopreservation of freshly isolated synaptosomes prepared from the cerebral cortex of rats.
    Gleitz J; Beile A; Wilffert B; Tegtmeier F
    J Neurosci Methods; 1993 May; 47(3):191-7. PubMed ID: 8271817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.