BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 3084295)

  • 1. Pyruvate utilization by synaptosomes is independent of calcium.
    Kauppinen RA; Nicholls DG
    FEBS Lett; 1986 Apr; 199(2):222-6. PubMed ID: 3084295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interrelationships between glucose metabolism, energy state, and the cytosolic free calcium concentration in cortical synaptosomes from the guinea pig.
    Kauppinen RA; Taipale HT; Komulainen H
    J Neurochem; 1989 Sep; 53(3):766-71. PubMed ID: 2503588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic glycolysis and postanoxic recovery of respiration of rat cortical synaptosomes are reduced by synaptosomal sodium load.
    Gleitz J; Beile A; Khan S; Wilffert B; Tegtmeier F
    Brain Res; 1993 May; 611(2):286-94. PubMed ID: 8334522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depolarization of the mitochondrial membrane potential increases free cytosolic calcium in synaptosomes.
    Heinonen E; Akerman KE; Kaila K
    Neurosci Lett; 1984 Aug; 49(1-2):33-7. PubMed ID: 6493595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the exocytotic release of glutamate from guinea-pig cerebral cortical synaptosomes.
    Sanchez-Prieto J; Sihra TS; Nicholls DG
    J Neurochem; 1987 Jul; 49(1):58-64. PubMed ID: 2884280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptosomal bioenergetics. The role of glycolysis, pyruvate oxidation and responses to hypoglycaemia.
    Kauppinen RA; Nicholls DG
    Eur J Biochem; 1986 Jul; 158(1):159-65. PubMed ID: 2874024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionophore A23187, verapamil, protonophores, and veratridine influence the release of gamma-aminobutyric acid from synaptosomes by modulation of the plasma membrane potential rather than the cytosolic calcium.
    Sihra TS; Scott IG; Nicholls DG
    J Neurochem; 1984 Dec; 43(6):1624-30. PubMed ID: 6436439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of pyruvate in neuronal calcium homeostasis. Effects on intracellular calcium pools.
    Villalba M; Martínez-Serrano A; Gómez-Puertas P; Blanco P; Börner C; Villa A; Casado M; Giménez C; Pereira R; Bogonez E
    J Biol Chem; 1994 Jan; 269(4):2468-76. PubMed ID: 7507925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of calcium in synaptosomal substrate oxidation.
    Patel TB; Sambasivarao D; Rashed HM
    Arch Biochem Biophys; 1988 Aug; 264(2):368-75. PubMed ID: 3135779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of intracellular calcium in presynaptic nerve terminals.
    Blaustein MP; Ratzlaff RW; Schweitzer ES
    Fed Proc; 1980 Aug; 39(10):2790-5. PubMed ID: 6773813
    [No Abstract]   [Full Text] [Related]  

  • 11. Calcium buffering in presynaptic nerve terminals. Free calcium levels measured with arsenazo III.
    Schweitzer ES; Blaustein MP
    Biochim Biophys Acta; 1980 Aug; 600(3):912-21. PubMed ID: 6773574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence of a large Ca2+-independent release of glutamate during anoxia in isolated nerve terminals (synaptosomes).
    Sánchez-Prieto J; González P
    J Neurochem; 1988 Apr; 50(4):1322-4. PubMed ID: 2894412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP depletion increases Ca2+ uptake by synaptosomes.
    Akerman KE; Nicholls DG
    FEBS Lett; 1981 Nov; 135(1):212-4. PubMed ID: 7319036
    [No Abstract]   [Full Text] [Related]  

  • 14. Release of acetylcholine from rat brain synaptosomes by various agents in the absence of external calcium ions.
    Adam-Vizi V; Ligeti E
    J Physiol; 1984 Aug; 353():505-21. PubMed ID: 6090643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phorbol esters potentiate rapid dopamine release from median eminence and striatal synaptosomes.
    Shu C; Selmanoff M
    Endocrinology; 1988 Jun; 122(6):2699-709. PubMed ID: 3131121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of sodium-calcium exchange in regulation of intracellular calcium in nerve terminals.
    Sanchez-Armass S; Blaustein MP
    Am J Physiol; 1987 Jun; 252(6 Pt 1):C595-603. PubMed ID: 3109248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relation of acetylcholine release to Ca2+ uptake and intraterminal Ca2+ concentration in guinea-pig cortex synaptosomes.
    Adam-Vizi V; Ashley RH
    J Neurochem; 1987 Oct; 49(4):1013-21. PubMed ID: 3625199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasma membrane depolarization and disturbed Na+ homeostasis induced by the protonophore carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazon in isolated nerve terminals.
    Tretter L; Chinopoulos C; Adam-Vizi V
    Mol Pharmacol; 1998 Apr; 53(4):734-41. PubMed ID: 9547365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+ transport by intact synaptosomes: the voltage-dependent Ca2+ channel and a re-evaluation of the role of sodium/calcium exchange.
    Akerman KE; Nicholls DG
    Eur J Biochem; 1981 Jul; 117(3):491-7. PubMed ID: 6269842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryopreservation of freshly isolated synaptosomes prepared from the cerebral cortex of rats.
    Gleitz J; Beile A; Wilffert B; Tegtmeier F
    J Neurosci Methods; 1993 May; 47(3):191-7. PubMed ID: 8271817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.