BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30843134)

  • 1. Modelling actin polymerization: the effect on confined cell migration.
    Hervas-Raluy S; Garcia-Aznar JM; Gomez-Benito MJ
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1177-1187. PubMed ID: 30843134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pushing off the walls: a mechanism of cell motility in confinement.
    Hawkins RJ; Piel M; Faure-Andre G; Lennon-Dumenil AM; Joanny JF; Prost J; Voituriez R
    Phys Rev Lett; 2009 Feb; 102(5):058103. PubMed ID: 19257561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational mechanics approach to assess the link between cell morphology and forces during confined migration.
    Aubry D; Thiam H; Piel M; Allena R
    Biomech Model Mechanobiol; 2015 Jan; 14(1):143-57. PubMed ID: 24895016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting the contribution of actin and vimentin intermediate filaments to mechanical phenotype of suspended cells using high-throughput deformability measurements and computational modeling.
    Gladilin E; Gonzalez P; Eils R
    J Biomech; 2014 Aug; 47(11):2598-605. PubMed ID: 24952458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Migration in Confined 3D Environments Is Determined by a Combination of Adhesiveness, Nuclear Volume, Contractility, and Cell Stiffness.
    Lautscham LA; Kämmerer C; Lange JR; Kolb T; Mark C; Schilling A; Strissel PL; Strick R; Gluth C; Rowat AC; Metzner C; Fabry B
    Biophys J; 2015 Sep; 109(5):900-13. PubMed ID: 26331248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical modelling of confined cell migration across constricted-curved micro-channels.
    Allena R
    Mol Cell Biomech; 2014 Sep; 11(3):185-208. PubMed ID: 25831860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperative symmetry-breaking by actin polymerization in a model for cell motility.
    van Oudenaarden A; Theriot JA
    Nat Cell Biol; 1999 Dec; 1(8):493-9. PubMed ID: 10587645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force transmission during adhesion-independent migration.
    Bergert M; Erzberger A; Desai RA; Aspalter IM; Oates AC; Charras G; Salbreux G; Paluch EK
    Nat Cell Biol; 2015 Apr; 17(4):524-9. PubMed ID: 25774834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical link between durotaxis, cell polarity and anisotropy during cell migration.
    Aubry D; Gupta M; Ladoux B; Allena R
    Phys Biol; 2015 Apr; 12(2):026008. PubMed ID: 25884335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual role of the nucleus in cell migration on planar substrates.
    Moure A; Gomez H
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1491-1508. PubMed ID: 31907682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force-velocity relation for actin-polymerization-driven motility from Brownian dynamics simulations.
    Lee KC; Liu AJ
    Biophys J; 2009 Sep; 97(5):1295-304. PubMed ID: 19720017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element analysis of the effects of focal adhesion mechanical properties and substrate stiffness on cell migration.
    Wong HC; Tang WC
    J Biomech; 2011 Apr; 44(6):1046-50. PubMed ID: 21354575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition from Actin-Driven to Water-Driven Cell Migration Depends on External Hydraulic Resistance.
    Li Y; Sun SX
    Biophys J; 2018 Jun; 114(12):2965-2973. PubMed ID: 29925032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water permeation drives tumor cell migration in confined microenvironments.
    Stroka KM; Jiang H; Chen SH; Tong Z; Wirtz D; Sun SX; Konstantopoulos K
    Cell; 2014 Apr; 157(3):611-23. PubMed ID: 24726433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational model of amoeboid cell migration.
    Lim FY; Koon YL; Chiam KH
    Comput Methods Biomech Biomed Engin; 2013 Oct; 16(10):1085-95. PubMed ID: 23342988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coarse-grained modeling and simulation of actin filament behavior based on Brownian dynamics method.
    Shimada Y; Adachi T; Inoue Y; Hojo M
    Mol Cell Biomech; 2009 Sep; 6(3):161-73. PubMed ID: 19670826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amplification of actin polymerization forces.
    Dmitrieff S; Nédélec F
    J Cell Biol; 2016 Mar; 212(7):763-6. PubMed ID: 27002174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating focal adhesion dynamics, cytoskeleton remodeling, and actin motor activity for predicting cell migration on 3D curved surfaces of the extracellular matrix.
    Kim MC; Kim C; Wood L; Neal D; Kamm RD; Asada HH
    Integr Biol (Camb); 2012 Nov; 4(11):1386-97. PubMed ID: 22990282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element modelling and experimental study of oblique soccer ball bounce.
    Rezaei A; Verhelst R; Van Paepegem W; Degrieck J
    J Sports Sci; 2011 Aug; 29(11):1201-13. PubMed ID: 21777166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of the force field required for nucleus deformation during cell migration through constrictions.
    Estabrook ID; Thiam HR; Piel M; Hawkins RJ
    PLoS Comput Biol; 2021 May; 17(5):e1008592. PubMed ID: 34029312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.