These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 30843387)
1. In Situ Plant Virus Nucleic Acid Isothermal Amplification Detection on Gold Nanoparticle-Modified Electrodes. Khater M; Escosura-Muñiz A; Altet L; Merkoçi A Anal Chem; 2019 Apr; 91(7):4790-4796. PubMed ID: 30843387 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical detection of plant virus using gold nanoparticle-modified electrodes. Khater M; de la Escosura-Muñiz A; Quesada-González D; Merkoçi A Anal Chim Acta; 2019 Jan; 1046():123-131. PubMed ID: 30482289 [TBL] [Abstract][Full Text] [Related]
3. Development of a reverse transcription recombinase polymerase based isothermal amplification coupled with lateral flow immunochromatographic assay (CTV-RT-RPA-LFICA) for rapid detection of Citrus tristeza virus. Ghosh DK; Kokane SB; Gowda S Sci Rep; 2020 Nov; 10(1):20593. PubMed ID: 33244066 [TBL] [Abstract][Full Text] [Related]
4. Development of a simple and rapid reverse transcription-loop mediated isothermal amplification (RT-LAMP) assay for sensitive detection of Citrus tristeza virus. Warghane A; Misra P; Bhose S; Biswas KK; Sharma AK; Reddy MK; Ghosh DK J Virol Methods; 2017 Dec; 250():6-10. PubMed ID: 28941614 [TBL] [Abstract][Full Text] [Related]
5. A rapid assay for detection of Rose rosette virus using reverse transcription-recombinase polymerase amplification using multiple gene targets. Babu B; Washburn BK; Miller SH; Poduch K; Sarigul T; Knox GW; Ochoa-Corona FM; Paret ML J Virol Methods; 2017 Feb; 240():78-84. PubMed ID: 27915036 [TBL] [Abstract][Full Text] [Related]
6. A strip of lateral flow gene assay using gold nanoparticles for point-of-care diagnosis of African swine fever virus in limited environment. Wang Z; Yu W; Xie R; Yang S; Chen A Anal Bioanal Chem; 2021 Jul; 413(18):4665-4672. PubMed ID: 34018036 [TBL] [Abstract][Full Text] [Related]
7. Ultrasensitive immunoassay for detection of Citrus tristeza virus in citrus sample using disposable microfluidic electrochemical device. Freitas TA; Proença CA; Baldo TA; Materón EM; Wong A; Magnani RF; Faria RC Talanta; 2019 Dec; 205():120110. PubMed ID: 31450419 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical detection of Piscirickettsia salmonis genomic DNA from salmon samples using solid-phase recombinase polymerase amplification. Del Río JS; Svobodova M; Bustos P; Conejeros P; O'Sullivan CK Anal Bioanal Chem; 2016 Dec; 408(30):8611-8620. PubMed ID: 27220649 [TBL] [Abstract][Full Text] [Related]
10. Detection of Citrus tristeza virus and Coinfecting Viroids. Saponari M; Zicca S; Loconsole G; Navarro B; Di Serio F Methods Mol Biol; 2019; 2015():67-78. PubMed ID: 31222697 [TBL] [Abstract][Full Text] [Related]
11. Rapid and Sensitive Detection of Citrus tristeza virus Using Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) Assay. Ghosh DK; Warghane A; Biswas KK Methods Mol Biol; 2019; 2015():143-150. PubMed ID: 31222701 [TBL] [Abstract][Full Text] [Related]
12. An isothermal based recombinase polymerase amplification assay for rapid, sensitive and robust indexing of citrus yellow mosaic virus. Kumar PV; Sharma SK; Rishi N; Ghosh DK; Baranwal VK Acta Virol; 2018; 62(1):104-108. PubMed ID: 29521109 [TBL] [Abstract][Full Text] [Related]
13. Solid-phase recombinase polymerase amplification using an extremely low concentration of a solution primer for sensitive electrochemical detection of hepatitis B viral DNA. Ichzan AM; Hwang SH; Cho H; Fang CS; Park S; Kim G; Kim J; Nandhakumar P; Yu B; Jon S; Kim KS; Yang H Biosens Bioelectron; 2021 May; 179():113065. PubMed ID: 33578116 [TBL] [Abstract][Full Text] [Related]
14. Recombinase polymerase amplification applied to plant virus detection and potential implications. Babu B; Ochoa-Corona FM; Paret ML Anal Biochem; 2018 Apr; 546():72-77. PubMed ID: 29408177 [TBL] [Abstract][Full Text] [Related]
15. Isothermal solid-phase amplification system for detection of Yersinia pestis. Mayboroda O; Gonzalez Benito A; Sabaté del Rio J; Svobodova M; Julich S; Tomaso H; O'Sullivan CK; Katakis I Anal Bioanal Chem; 2016 Jan; 408(3):671-6. PubMed ID: 26563112 [TBL] [Abstract][Full Text] [Related]
16. Specific and Sensitive Isothermal Electrochemical Biosensor for Plant Pathogen DNA Detection with Colloidal Gold Nanoparticles as Probes. Lau HY; Wu H; Wee EJ; Trau M; Wang Y; Botella JR Sci Rep; 2017 Jan; 7():38896. PubMed ID: 28094255 [TBL] [Abstract][Full Text] [Related]
17. Magnetic Bead/Gold Nanoparticle Double-Labeled Primers for Electrochemical Detection of Isothermal Amplified Leishmania DNA. de la Escosura-Muñiz A; Baptista-Pires L; Serrano L; Altet L; Francino O; Sánchez A; Merkoçi A Small; 2016 Jan; 12(2):205-13. PubMed ID: 26578391 [TBL] [Abstract][Full Text] [Related]
18. Development of multiplex polymerase chain reaction assay for simultaneous detection of clostero-, badna- and mandari-viruses along with huanglongbing bacterium in citrus trees. Meena RP; Baranwal VK J Virol Methods; 2016 Sep; 235():58-64. PubMed ID: 27208471 [TBL] [Abstract][Full Text] [Related]
19. Validation of High-Throughput Sequencing (HTS) for Routine Detection of Citrus Viruses and Viroids. Bester R; Maree HJ Methods Mol Biol; 2024; 2732():199-219. PubMed ID: 38060127 [TBL] [Abstract][Full Text] [Related]
20. Gold nanoparticle-mediated nucleic acid isothermal amplification with enhanced specificity. Ye X; Fang X; Li X; Kong J Anal Chim Acta; 2018 Dec; 1043():150-157. PubMed ID: 30392663 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]