BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 30843479)

  • 1. Diaphragmatic recovery in rats with cervical spinal cord injury induced by a theophylline nanoconjugate: Challenges for clinical use.
    Liu F; Zhang Y; Schafer J; Mao G; Goshgarian HG
    J Spinal Cord Med; 2019 Nov; 42(6):725-734. PubMed ID: 30843479
    [No Abstract]   [Full Text] [Related]  

  • 2. Identification of the neural pathway underlying spontaneous crossed phrenic activity in neonatal rats.
    Huang Y; Goshgarian HG
    Neuroscience; 2009 Nov; 163(4):1109-18. PubMed ID: 19596054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoconjugate-bound adenosine A
    Minic Z; Wilson S; Liu F; Sankari A; Mao G; Goshgarian H
    Exp Neurol; 2017 Jun; 292():56-62. PubMed ID: 28223038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the axon pathways which mediate functional recovery of a paralyzed hemidiaphragm following spinal cord hemisection in the adult rat.
    Moreno DE; Yu XJ; Goshgarian HG
    Exp Neurol; 1992 Jun; 116(3):219-28. PubMed ID: 1375167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pattern and extent of retrograde transsynaptic transport of WGA-Alexa 488 in the phrenic motor system is dependent upon the site of application.
    Goshgarian HG; Buttry JL
    J Neurosci Methods; 2014 Jan; 222():156-64. PubMed ID: 24239778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Administration of phosphodiesterase inhibitors and an adenosine A1 receptor antagonist induces phrenic nerve recovery in high cervical spinal cord injured rats.
    Kajana S; Goshgarian HG
    Exp Neurol; 2008 Apr; 210(2):671-80. PubMed ID: 18289533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actions of systemic theophylline on hemidiaphragmatic recovery in rats following cervical spinal cord hemisection.
    Nantwi KD; El-Bohy A; Goshgarian HG
    Exp Neurol; 1996 Jul; 140(1):53-9. PubMed ID: 8682179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of 5-HT
    Lee KZ; Gonzalez-Rothi EJ
    Respir Physiol Neurobiol; 2017 Oct; 244():51-55. PubMed ID: 28711602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Respiratory neuron subpopulations and pathways potentially involved in the reactivation of phrenic motoneurons after C2 hemisection.
    Boulenguez P; Gauthier P; Kastner A
    Brain Res; 2007 May; 1148():96-104. PubMed ID: 17379194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Injection of WGA-Alexa 488 into the ipsilateral hemidiaphragm of acutely and chronically C2 hemisected rats reveals activity-dependent synaptic plasticity in the respiratory motor pathways.
    Buttry JL; Goshgarian HG
    Exp Neurol; 2014 Nov; 261():440-50. PubMed ID: 25086272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theophylline-induced respiratory recovery following cervical spinal cord hemisection is augmented by serotonin 2 receptor stimulation.
    Basura GJ; Nantwi KD; Goshgarian HG
    Brain Res; 2002 Nov; 956(1):1-13. PubMed ID: 12426040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LAR inhibitory peptide promotes recovery of diaphragm function and multiple forms of respiratory neural circuit plasticity after cervical spinal cord injury.
    Cheng L; Sami A; Ghosh B; Urban MW; Heinsinger NM; Liang SS; Smith GM; Wright MC; Li S; Lepore AC
    Neurobiol Dis; 2021 Jan; 147():105153. PubMed ID: 33127470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alkylxanthine-induced recovery of respiratory function following cervical spinal cord injury in adult rats.
    Nantwi KD; Goshgarian HG
    Exp Neurol; 2001 Mar; 168(1):123-34. PubMed ID: 11170727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein Tyrosine Phosphatase σ Inhibitory Peptide Promotes Recovery of Diaphragm Function and Sprouting of Bulbospinal Respiratory Axons after Cervical Spinal Cord Injury.
    Urban MW; Ghosh B; Block CG; Charsar BA; Smith GM; Wright MC; Li S; Lepore AC
    J Neurotrauma; 2020 Feb; 37(3):572-579. PubMed ID: 31392919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-type specific expression of constitutively-active Rheb promotes regeneration of bulbospinal respiratory axons following cervical SCI.
    Urban MW; Ghosh B; Strojny LR; Block CG; Blazejewski SM; Wright MC; Smith GM; Lepore AC
    Exp Neurol; 2018 May; 303():108-119. PubMed ID: 29453976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of long-term theophylline exposure on recovery of respiratory function and expression of adenosine A1 mRNA in cervical spinal cord hemisected adult rats.
    Nantwi KD; Basura GJ; Goshgarian HG
    Exp Neurol; 2003 Jul; 182(1):232-9. PubMed ID: 12821393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motoneuron BDNF/TrkB signaling enhances functional recovery after cervical spinal cord injury.
    Mantilla CB; Gransee HM; Zhan WZ; Sieck GC
    Exp Neurol; 2013 Sep; 247():101-9. PubMed ID: 23583688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosinergic mechanisms underlying recovery of diaphragm motor function following upper cervical spinal cord injury: potential therapeutic implications.
    Nantwi KD; Goshgarian HG
    Neurol Res; 2005 Mar; 27(2):195-205. PubMed ID: 15829183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bulbospinal respiratory neurons are a source of double synapses onto phrenic motoneurons following cervical spinal cord hemisection in adult rats.
    Goshgarian HG; Ellenberger HH; Feldman JL
    Brain Res; 1993 Jan; 600(1):169-73. PubMed ID: 8422584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phrenic motor outputs in response to bronchopulmonary C-fibre activation following chronic cervical spinal cord injury.
    Lee KZ
    J Physiol; 2016 Oct; 594(20):6009-6024. PubMed ID: 27106483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.