These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
397 related articles for article (PubMed ID: 30843565)
1. Few layer covalent organic frameworks with graphene sheets as cathode materials for lithium-ion batteries. Wang Z; Li Y; Liu P; Qi Q; Zhang F; Lu G; Zhao X; Huang X Nanoscale; 2019 Mar; 11(12):5330-5335. PubMed ID: 30843565 [TBL] [Abstract][Full Text] [Related]
2. Exfoliation of Covalent Organic Frameworks into Few-Layer Redox-Active Nanosheets as Cathode Materials for Lithium-Ion Batteries. Wang S; Wang Q; Shao P; Han Y; Gao X; Ma L; Yuan S; Ma X; Zhou J; Feng X; Wang B J Am Chem Soc; 2017 Mar; 139(12):4258-4261. PubMed ID: 28316238 [TBL] [Abstract][Full Text] [Related]
3. High-Lithium-Affinity Chemically Exfoliated 2D Covalent Organic Frameworks. Chen X; Li Y; Wang L; Xu Y; Nie A; Li Q; Wu F; Sun W; Zhang X; Vajtai R; Ajayan PM; Chen L; Wang Y Adv Mater; 2019 Jul; 31(29):e1901640. PubMed ID: 31155765 [TBL] [Abstract][Full Text] [Related]
4. A Truxenone-based Covalent Organic Framework as an All-Solid-State Lithium-Ion Battery Cathode with High Capacity. Yang X; Hu Y; Dunlap N; Wang X; Huang S; Su Z; Sharma S; Jin Y; Huang F; Wang X; Lee SH; Zhang W Angew Chem Int Ed Engl; 2020 Nov; 59(46):20385-20389. PubMed ID: 32722860 [TBL] [Abstract][Full Text] [Related]
5. A Microporous Covalent-Organic Framework with Abundant Accessible Carbonyl Groups for Lithium-Ion Batteries. Luo Z; Liu L; Ning J; Lei K; Lu Y; Li F; Chen J Angew Chem Int Ed Engl; 2018 Jul; 57(30):9443-9446. PubMed ID: 29863784 [TBL] [Abstract][Full Text] [Related]
6. Covalent Organic Frameworks as Electrode Materials for Metal Ion Batteries: A Current Review. Wang Z; Jin W; Huang X; Lu G; Li Y Chem Rec; 2020 Oct; 20(10):1198-1219. PubMed ID: 32881320 [TBL] [Abstract][Full Text] [Related]
7. In Situ Growth of Covalent Organic Framework Nanosheets on Graphene as the Cathode for Long-Life High-Capacity Lithium-Ion Batteries. Liu X; Jin Y; Wang H; Yang X; Zhang P; Wang K; Jiang J Adv Mater; 2022 Sep; 34(37):e2203605. PubMed ID: 35905464 [TBL] [Abstract][Full Text] [Related]
8. One-Dimensional Covalent Organic Framework as High-Performance Cathode Materials for Lithium-Ion Batteries. Jia C; Duan A; Liu C; Wang WZ; Gan SX; Qi QY; Li Y; Huang X; Zhao X Small; 2023 Jun; 19(24):e2300518. PubMed ID: 36918750 [TBL] [Abstract][Full Text] [Related]
9. Mesoporous Polyimide-Linked Covalent Organic Framework with Multiple Redox-Active Sites for High-Performance Cathodic Li Storage. Yang X; Gong L; Liu X; Zhang P; Li B; Qi D; Wang K; He F; Jiang J Angew Chem Int Ed Engl; 2022 Aug; 61(31):e202207043. PubMed ID: 35638157 [TBL] [Abstract][Full Text] [Related]
10. Molecular Engineering of Covalent Organic Framework Cathodes for Enhanced Zinc-Ion Batteries. Wang W; Kale VS; Cao Z; Lei Y; Kandambeth S; Zou G; Zhu Y; Abouhamad E; Shekhah O; Cavallo L; Eddaoudi M; Alshareef HN Adv Mater; 2021 Oct; 33(39):e2103617. PubMed ID: 34365688 [TBL] [Abstract][Full Text] [Related]
11. Free standing reduced graphene oxide film cathodes for lithium ion batteries. Ha SH; Jeong YS; Lee YJ ACS Appl Mater Interfaces; 2013 Dec; 5(23):12295-303. PubMed ID: 24229056 [TBL] [Abstract][Full Text] [Related]
12. Iodine doping induced activation of covalent organic framework cathodes for Li-ion batteries. Ren G; Cai F; Wang S; Luo Z; Yuan Z RSC Adv; 2023 Jun; 13(27):18983-18990. PubMed ID: 37362603 [TBL] [Abstract][Full Text] [Related]
13. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Li J; Jing X; Li Q; Li S; Gao X; Feng X; Wang B Chem Soc Rev; 2020 Jun; 49(11):3565-3604. PubMed ID: 32369058 [TBL] [Abstract][Full Text] [Related]
14. High-Performance Polyimide Covalent Organic Frameworks for Lithium-Ion Batteries: Exceptional Stability and Capacity Retention at High Current Densities. Li J; Zhang J; Hou Y; Suo J; Liu J; Li H; Qiu S; Valtchev V; Fang Q; Liu X Angew Chem Int Ed Engl; 2024 Dec; 63(52):e202412452. PubMed ID: 39343741 [TBL] [Abstract][Full Text] [Related]
16. A Crystalline, 2D Polyarylimide Cathode for Ultrastable and Ultrafast Li Storage. Wang G; Chandrasekhar N; Biswal BP; Becker D; Paasch S; Brunner E; Addicoat M; Yu M; Berger R; Feng X Adv Mater; 2019 Jul; 31(28):e1901478. PubMed ID: 31099072 [TBL] [Abstract][Full Text] [Related]
17. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage. Xu F; Jin S; Zhong H; Wu D; Yang X; Chen X; Wei H; Fu R; Jiang D Sci Rep; 2015 Feb; 5():8225. PubMed ID: 25650133 [TBL] [Abstract][Full Text] [Related]
18. Reduced Graphene Oxide-Wrapped Nickel-Rich Cathode Materials for Lithium Ion Batteries. Shim JH; Kim YM; Park M; Kim J; Lee S ACS Appl Mater Interfaces; 2017 Jun; 9(22):18720-18729. PubMed ID: 28516759 [TBL] [Abstract][Full Text] [Related]
19. Covalent Organic Frameworks: Their Composites and Derivatives for Rechargeable Metal-Ion Batteries. Sun B; Sun Z; Yang Y; Huang XL; Jun SC; Zhao C; Xue J; Liu S; Liu HK; Dou SX ACS Nano; 2024 Jan; 18(1):28-66. PubMed ID: 38117556 [TBL] [Abstract][Full Text] [Related]
20. Dispersion-Assembly Approach to Synthesize Three-Dimensional Graphene/Polymer Composite Aerogel as a Powerful Organic Cathode for Rechargeable Li and Na Batteries. Zhang Y; Huang Y; Yang G; Bu F; Li K; Shakir I; Xu Y ACS Appl Mater Interfaces; 2017 May; 9(18):15549-15556. PubMed ID: 28425698 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]