These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 30843787)

  • 1. Ventrolateral periaqueductal gray neurons prioritize threat probability over fear output.
    Wright KM; McDannald MA
    Elife; 2019 Mar; 8():. PubMed ID: 30843787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cue-inhibited ventrolateral periaqueductal gray neurons signal fear output and threat probability in male rats.
    Wright KM; Jhou TC; Pimpinelli D; McDannald MA
    Elife; 2019 Sep; 8():. PubMed ID: 31566567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early adolescent adversity alters periaqueductal gray/dorsal raphe threat responding in adult female rats.
    Moaddab M; Wright KM; McDannald MA
    Sci Rep; 2020 Oct; 10(1):18035. PubMed ID: 33093472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ventrolateral periaqueductal grey updates fear via positive prediction error.
    Walker RA; Wright KM; Jhou TC; McDannald MA
    Eur J Neurosci; 2020 Feb; 51(3):866-880. PubMed ID: 31376295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions of the amygdala central nucleus and ventrolateral periaqueductal grey to freezing and instrumental suppression in Pavlovian fear conditioning.
    McDannald MA
    Behav Brain Res; 2010 Jul; 211(1):111-7. PubMed ID: 20298722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brief optogenetic inhibition of rat lateral or ventrolateral periaqueductal gray augments the acquisition of Pavlovian fear conditioning.
    Assareh N; Bagley EE; Carrive P; McNally GP
    Behav Neurosci; 2017 Dec; 131(6):454-459. PubMed ID: 29083203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of chemogenetic excitation or inhibition of the ventrolateral periaqueductal gray on the acquisition and extinction of Pavlovian fear conditioning.
    Arico C; Bagley EE; Carrive P; Assareh N; McNally GP
    Neurobiol Learn Mem; 2017 Oct; 144():186-197. PubMed ID: 28716712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opioid receptors in the midbrain periaqueductal gray regulate extinction of pavlovian fear conditioning.
    McNally GP; Pigg M; Weidemann G
    J Neurosci; 2004 Aug; 24(31):6912-9. PubMed ID: 15295026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Threat and Bidirectional Valence Signaling in the Nucleus Accumbens Core.
    Ray MH; Moaddab M; McDannald MA
    J Neurosci; 2022 Feb; 42(5):817-833. PubMed ID: 34764160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebellar modulation of memory encoding in the periaqueductal grey and fear behaviour.
    Lawrenson C; Paci E; Pickford J; Drake RAR; Lumb BM; Apps R
    Elife; 2022 Mar; 11():. PubMed ID: 35287795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prefrontal-Periaqueductal Gray-Projecting Neurons Mediate Context Fear Discrimination.
    Rozeske RR; Jercog D; Karalis N; Chaudun F; Khoder S; Girard D; Winke N; Herry C
    Neuron; 2018 Feb; 97(4):898-910.e6. PubMed ID: 29398355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of ventrolateral periaqueductal gray neurons in the behavioral and cardiovascular responses to contextual conditioned fear and poststress recovery.
    Walker P; Carrive P
    Neuroscience; 2003; 116(3):897-912. PubMed ID: 12573728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiological responses of the ventrolateral periaqueductal gray matter neurons towards peripheral bladder stimulation.
    Zare A; Schipper S; Stein W; Temel Y; van Koeveringe GA; Jahanshahi A
    Brain Res Bull; 2018 Sep; 142():116-121. PubMed ID: 30016723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fos-like immunoreactive neurons following electrical stimulation of the dorsal periaqueductal gray at freezing and escape thresholds.
    Vianna DM; Borelli KG; Ferreira-Netto C; Macedo CE; Brandão ML
    Brain Res Bull; 2003 Dec; 62(3):179-89. PubMed ID: 14698351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sparse genetically defined neurons refine the canonical role of periaqueductal gray columnar organization.
    La-Vu MQ; Sethi E; Maesta-Pereira S; Schuette PJ; Tobias BC; Reis FMCV; Wang W; Torossian A; Bishop A; Leonard SJ; Lin L; Cahill CM; Adhikari A
    Elife; 2022 Jun; 11():. PubMed ID: 35674316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ventral pallidum neurons dynamically signal relative threat.
    Moaddab M; Ray MH; McDannald MA
    Commun Biol; 2021 Jan; 4(1):43. PubMed ID: 33420332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role played by periaqueductal gray neurons in parasympathetically mediated fear bradycardia in conscious rats.
    Koba S; Inoue R; Watanabe T
    Physiol Rep; 2016 Jun; 4(12):. PubMed ID: 27335434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Periaqueductal Gray Orchestrates Sensory and Motor Circuits at Multiple Levels of the Neuraxis.
    Koutsikou S; Watson TC; Crook JJ; Leith JL; Lawrenson CL; Apps R; Lumb BM
    J Neurosci; 2015 Oct; 35(42):14132-47. PubMed ID: 26490855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebellar modulation of synaptic input to freezing-related neurons in the periaqueductal gray.
    Vaaga CE; Brown ST; Raman IM
    Elife; 2020 Mar; 9():. PubMed ID: 32207681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bidirectional control of fear memories by cerebellar neurons projecting to the ventrolateral periaqueductal grey.
    Frontera JL; Baba Aissa H; Sala RW; Mailhes-Hamon C; Georgescu IA; Léna C; Popa D
    Nat Commun; 2020 Oct; 11(1):5207. PubMed ID: 33060630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.