These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 30843823)
1. Retinal Image Synthesis and Semi-Supervised Learning for Glaucoma Assessment. Diaz-Pinto A; Colomer A; Naranjo V; Morales S; Xu Y; Frangi AF IEEE Trans Med Imaging; 2019 Sep; 38(9):2211-2218. PubMed ID: 30843823 [TBL] [Abstract][Full Text] [Related]
2. Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning. Bajwa MN; Malik MI; Siddiqui SA; Dengel A; Shafait F; Neumeier W; Ahmed S BMC Med Inform Decis Mak; 2019 Jul; 19(1):136. PubMed ID: 31315618 [TBL] [Abstract][Full Text] [Related]
3. Joint optic disc and cup segmentation using semi-supervised conditional GANs. Liu S; Hong J; Lu X; Jia X; Lin Z; Zhou Y; Liu Y; Zhang H Comput Biol Med; 2019 Dec; 115():103485. PubMed ID: 31630029 [TBL] [Abstract][Full Text] [Related]
4. Direct Cup-to-Disc Ratio Estimation for Glaucoma Screening via Semi-Supervised Learning. Zhao R; Chen X; Liu X; Chen Z; Guo F; Li S IEEE J Biomed Health Inform; 2020 Apr; 24(4):1104-1113. PubMed ID: 31403451 [TBL] [Abstract][Full Text] [Related]
5. Fully Convolutional Networks for Monocular Retinal Depth Estimation and Optic Disc-Cup Segmentation. Shankaranarayana SM; Ram K; Mitra K; Sivaprakasam M IEEE J Biomed Health Inform; 2019 Jul; 23(4):1417-1426. PubMed ID: 30762573 [TBL] [Abstract][Full Text] [Related]
6. The region of interest localization for glaucoma analysis from retinal fundus image using deep learning. Mitra A; Banerjee PS; Roy S; Roy S; Setua SK Comput Methods Programs Biomed; 2018 Oct; 165():25-35. PubMed ID: 30337079 [TBL] [Abstract][Full Text] [Related]
7. A Machine Learning Ensemble Classifier for Early Prediction of Diabetic Retinopathy. S K S; P A J Med Syst; 2017 Nov; 41(12):201. PubMed ID: 29124453 [TBL] [Abstract][Full Text] [Related]
8. A Novel Weakly Supervised Multitask Architecture for Retinal Lesions Segmentation on Fundus Images. Playout C; Duval R; Cheriet F IEEE Trans Med Imaging; 2019 Oct; 38(10):2434-2444. PubMed ID: 30908197 [TBL] [Abstract][Full Text] [Related]
9. Automated Diagnosis of Glaucoma Using Empirical Wavelet Transform and Correntropy Features Extracted From Fundus Images. Maheshwari S; Pachori RB; Acharya UR IEEE J Biomed Health Inform; 2017 May; 21(3):803-813. PubMed ID: 28113877 [TBL] [Abstract][Full Text] [Related]
10. Semi-Supervised Generative Adversarial Nets with Multiple Generators for SAR Image Recognition. Gao F; Ma F; Wang J; Sun J; Yang E; Zhou H Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30126120 [TBL] [Abstract][Full Text] [Related]
11. Semi-supervised mp-MRI data synthesis with StitchLayer and auxiliary distance maximization. Wang Z; Lin Y; Cheng KT; Yang X Med Image Anal; 2020 Jan; 59():101565. PubMed ID: 31630010 [TBL] [Abstract][Full Text] [Related]
12. Consistency and adversarial semi-supervised learning for medical image segmentation. Tang Y; Wang S; Qu Y; Cui Z; Zhang W Comput Biol Med; 2023 Jul; 161():107018. PubMed ID: 37216776 [TBL] [Abstract][Full Text] [Related]
13. Generative Adversarial Network for Medical Images (MI-GAN). Iqbal T; Ali H J Med Syst; 2018 Oct; 42(11):231. PubMed ID: 30315368 [TBL] [Abstract][Full Text] [Related]
14. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques. Akyol K; Şen B; Bayır Ş Comput Math Methods Med; 2016; 2016():6814791. PubMed ID: 27110272 [TBL] [Abstract][Full Text] [Related]
15. Robust Content-Adaptive Global Registration for Multimodal Retinal Images Using Weakly Supervised Deep-Learning Framework. Wang Y; Zhang J; Cavichini M; Bartsch DG; Freeman WR; Nguyen TQ; An C IEEE Trans Image Process; 2021; 30():3167-3178. PubMed ID: 33600314 [TBL] [Abstract][Full Text] [Related]
16. Retinal image quality assessment using deep learning. Zago GT; Andreão RV; Dorizzi B; Teatini Salles EO Comput Biol Med; 2018 Dec; 103():64-70. PubMed ID: 30340214 [TBL] [Abstract][Full Text] [Related]
17. Development and Clinical Validation of Semi-Supervised Generative Adversarial Networks for Detection of Retinal Disorders in Optical Coherence Tomography Images Using Small Dataset. Zheng C; Ye H; Yang J; Fei P; Qiu Y; Xie X; Wang Z; Chen J; Zhao P Asia Pac J Ophthalmol (Phila); 2022 May; 11(3):219-226. PubMed ID: 35342179 [TBL] [Abstract][Full Text] [Related]
18. Surrogate-Assisted Retinal OCT Image Classification Based on Convolutional Neural Networks. Rong Y; Xiang D; Zhu W; Yu K; Shi F; Fan Z; Chen X IEEE J Biomed Health Inform; 2019 Jan; 23(1):253-263. PubMed ID: 29994378 [TBL] [Abstract][Full Text] [Related]
19. Diagnosis of retinal health in digital fundus images using continuous wavelet transform (CWT) and entropies. Koh JEW; Acharya UR; Hagiwara Y; Raghavendra U; Tan JH; Sree SV; Bhandary SV; Rao AK; Sivaprasad S; Chua KC; Laude A; Tong L Comput Biol Med; 2017 May; 84():89-97. PubMed ID: 28351716 [TBL] [Abstract][Full Text] [Related]
20. A supervised joint multi-layer segmentation framework for retinal optical coherence tomography images using conditional random field. Chakravarty A; Sivaswamy J Comput Methods Programs Biomed; 2018 Oct; 165():235-250. PubMed ID: 30337078 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]