These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 30843843)
1. Implementation and Evaluation of a 50 kHz, 28μs Motion-to-Pose Latency Head Tracking Instrument. Blate A; Whitton M; Singh M; Welch G; State A; Whitted T; Fuchs H IEEE Trans Vis Comput Graph; 2019 May; 25(5):1970-1980. PubMed ID: 30843843 [TBL] [Abstract][Full Text] [Related]
2. HMD-EgoPose: head-mounted display-based egocentric marker-less tool and hand pose estimation for augmented surgical guidance. Doughty M; Ghugre NR Int J Comput Assist Radiol Surg; 2022 Dec; 17(12):2253-2262. PubMed ID: 35701681 [TBL] [Abstract][Full Text] [Related]
3. Development of a surgical navigation system based on augmented reality using an optical see-through head-mounted display. Chen X; Xu L; Wang Y; Wang H; Wang F; Zeng X; Wang Q; Egger J J Biomed Inform; 2015 Jun; 55():124-31. PubMed ID: 25882923 [TBL] [Abstract][Full Text] [Related]
4. STTAR: Surgical Tool Tracking Using Off-the-Shelf Augmented Reality Head-Mounted Displays. Martin-Gomez A; Li H; Song T; Yang S; Wang G; Ding H; Navab N; Zhao Z; Armand M IEEE Trans Vis Comput Graph; 2024 Jul; 30(7):3578-3593. PubMed ID: 37021885 [TBL] [Abstract][Full Text] [Related]
5. A head-mounted operating binocular for augmented reality visualization in medicine--design and initial evaluation. Birkfellner W; Figl M; Huber K; Watzinger F; Wanschitz F; Hummel J; Hanel R; Greimel W; Homolka P; Ewers R; Bergmann H IEEE Trans Med Imaging; 2002 Aug; 21(8):991-7. PubMed ID: 12472271 [TBL] [Abstract][Full Text] [Related]
6. AR-Loupe: Magnified Augmented Reality by Combining an Optical See-Through Head-Mounted Display and a Loupe. Qian L; Song T; Unberath M; Kazanzides P IEEE Trans Vis Comput Graph; 2022 Jul; 28(7):2550-2562. PubMed ID: 33170780 [TBL] [Abstract][Full Text] [Related]
7. Accuracy assessment for the co-registration between optical and VIVE head-mounted display tracking. Groves LA; Carnahan P; Allen DR; Adam R; Peters TM; Chen ECS Int J Comput Assist Radiol Surg; 2019 Jul; 14(7):1207-1215. PubMed ID: 31069642 [TBL] [Abstract][Full Text] [Related]
8. Awareness of the real-world environment when using augmented reality head-mounted display. Aromaa S; Väätänen A; Aaltonen I; Goriachev V; Helin K; Karjalainen J Appl Ergon; 2020 Oct; 88():103145. PubMed ID: 32421637 [TBL] [Abstract][Full Text] [Related]
9. Comparison of visual fatigue caused by head-mounted display for virtual reality and two-dimensional display using objective and subjective evaluation. Hirota M; Kanda H; Endo T; Miyoshi T; Miyagawa S; Hirohara Y; Yamaguchi T; Saika M; Morimoto T; Fujikado T Ergonomics; 2019 Jun; 62(6):759-766. PubMed ID: 30773103 [TBL] [Abstract][Full Text] [Related]
10. Parallax360: Stereoscopic 360° Scene Representation for Head-Motion Parallax. Luo B; Xu F; Richardt C; Yong JH IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1545-1553. PubMed ID: 29543172 [TBL] [Abstract][Full Text] [Related]
11. An integrated approach to endoscopic instrument tracking for augmented reality applications in surgical simulation training. Loukas C; Lahanas V; Georgiou E Int J Med Robot; 2013 Dec; 9(4):e34-51. PubMed ID: 23355307 [TBL] [Abstract][Full Text] [Related]
12. Color Contrast Enhanced Rendering for Optical See-Through Head-Mounted Displays. Zhang Y; Wang R; Peng Y; Hua W; Bao H IEEE Trans Vis Comput Graph; 2022 Dec; 28(12):4490-4502. PubMed ID: 34161241 [TBL] [Abstract][Full Text] [Related]
13. JanusVF: accurate navigation using SCAAT and virtual fiducials. Hutson M; Reiners D IEEE Trans Vis Comput Graph; 2011 Jan; 17(1):3-13. PubMed ID: 20548110 [TBL] [Abstract][Full Text] [Related]
14. A Comparative Evaluation of Optical See-Through Augmented Reality in Surgical Guidance. Li R; Han B; Li H; Ma L; Zhang X; Zhao Z; Liao H IEEE Trans Vis Comput Graph; 2024 Jul; 30(7):4362-4374. PubMed ID: 37030748 [TBL] [Abstract][Full Text] [Related]
15. SGaze: A Data-Driven Eye-Head Coordination Model for Realtime Gaze Prediction. Hu Z; Zhang C; Li S; Wang G; Manocha D IEEE Trans Vis Comput Graph; 2019 May; 25(5):2002-2010. PubMed ID: 30794182 [TBL] [Abstract][Full Text] [Related]
16. Light-Field Correction for Spatial Calibration of Optical See-Through Head-Mounted Displays. Itoh Y; Klinker G IEEE Trans Vis Comput Graph; 2015 Apr; 21(4):471-480. PubMed ID: 26357097 [TBL] [Abstract][Full Text] [Related]
17. Semi-parametric color reproduction method for optical see-through head-mounted displays. Itoh Y; Dzitsiuk M; Amano T; Klinker G IEEE Trans Vis Comput Graph; 2015 Nov; 21(11):1269-1278. PubMed ID: 26439828 [TBL] [Abstract][Full Text] [Related]
18. Comparison of optical see-through head-mounted displays for surgical interventions with object-anchored 2D-display. Qian L; Barthel A; Johnson A; Osgood G; Kazanzides P; Navab N; Fuerst B Int J Comput Assist Radiol Surg; 2017 Jun; 12(6):901-910. PubMed ID: 28343301 [TBL] [Abstract][Full Text] [Related]
19. Head Tracking Latency in Virtual Environments Revisited: Do Users with Multiple Sclerosis Notice Latency Less? Samaraweera G; Guo R; Quarles J IEEE Trans Vis Comput Graph; 2016 May; 22(5):1630-6. PubMed ID: 27045917 [TBL] [Abstract][Full Text] [Related]
20. Photosensor-Based Latency Measurement System for Head-Mounted Displays. Seo MW; Choi SW; Lee SL; Oh EY; Baek JS; Kang SJ Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28505115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]