These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 30843846)
1. BCI Monitor Enhances Electroencephalographic and Cerebral Hemodynamic Activations During Motor Training. Wang Z; Zhou Y; Chen L; Gu B; Yi W; Liu S; Xu M; Qi H; He F; Ming D IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):780-787. PubMed ID: 30843846 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of cortical activation for motor imagery during BCI-FES training Wang Z; Chen L; Yi W; Gu B; Liu S; An X; Xu M; Qi H; He F; Wan B; Ming D Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2527-2530. PubMed ID: 30440922 [TBL] [Abstract][Full Text] [Related]
3. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG. Kaiser V; Bauernfeind G; Kreilinger A; Kaufmann T; Kübler A; Neuper C; Müller-Putz GR Neuroimage; 2014 Jan; 85 Pt 1():432-44. PubMed ID: 23651839 [TBL] [Abstract][Full Text] [Related]
4. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study. Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295 [TBL] [Abstract][Full Text] [Related]
5. A BCI-Based Vibrotactile Neurofeedback Training Improves Motor Cortical Excitability During Motor Imagery. Grigorev NA; Savosenkov AO; Lukoyanov MV; Udoratina A; Shusharina NN; Kaplan AY; Hramov AE; Kazantsev VB; Gordleeva S IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1583-1592. PubMed ID: 34343094 [TBL] [Abstract][Full Text] [Related]
6. Toward Comparison of Cortical Activation with Different Motor Learning Methods Using Event-Related Design: EEG-fNIRS Study. Jeong H; Song M; Oh S; Kim J; Kim J Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6339-6342. PubMed ID: 31947292 [TBL] [Abstract][Full Text] [Related]
7. A BCI based visual-haptic neurofeedback training improves cortical activations and classification performance during motor imagery. Wang Z; Zhou Y; Chen L; Gu B; Liu S; Xu M; Qi H; He F; Ming D J Neural Eng; 2019 Oct; 16(6):066012. PubMed ID: 31365911 [TBL] [Abstract][Full Text] [Related]
8. Incorporating EEG and fNIRS Patterns to Evaluate Cortical Excitability and MI-BCI Performance During Motor Training. Wang Z; Yang L; Zhou Y; Chen L; Gu B; Liu S; Xu M; He F; Ming D IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2872-2882. PubMed ID: 37262121 [TBL] [Abstract][Full Text] [Related]
9. Effect of instructive visual stimuli on neurofeedback training for motor imagery-based brain-computer interface. Kondo T; Saeki M; Hayashi Y; Nakayashiki K; Takata Y Hum Mov Sci; 2015 Oct; 43():239-49. PubMed ID: 25467185 [TBL] [Abstract][Full Text] [Related]
10. Hybrid brain-computer interface and functional electrical stimulation for sensorimotor training in participants with tetraplegia: a proof-of-concept study. Vučković A; Wallace L; Allan DB J Neurol Phys Ther; 2015 Jan; 39(1):3-14. PubMed ID: 25415550 [TBL] [Abstract][Full Text] [Related]
11. Enhancing performance of a motor imagery based brain-computer interface by incorporating electrical stimulation-induced SSSEP. Yi W; Qiu S; Wang K; Qi H; Zhao X; He F; Zhou P; Yang J; Ming D J Neural Eng; 2017 Apr; 14(2):026002. PubMed ID: 28004644 [TBL] [Abstract][Full Text] [Related]
12. Influence of motor imagination on cortical activation during functional electrical stimulation. Reynolds C; Osuagwu BA; Vuckovic A Clin Neurophysiol; 2015 Jul; 126(7):1360-9. PubMed ID: 25454278 [TBL] [Abstract][Full Text] [Related]
13. Action Observation of Own Hand Movement Enhances Event-Related Desynchronization. Nagai H; Tanaka T IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1407-1415. PubMed ID: 31144639 [TBL] [Abstract][Full Text] [Related]
14. Neurophysiological substrates of stroke patients with motor imagery-based Brain-Computer Interface training. Li M; Liu Y; Wu Y; Liu S; Jia J; Zhang L Int J Neurosci; 2014 Jun; 124(6):403-15. PubMed ID: 24079396 [TBL] [Abstract][Full Text] [Related]
15. Muscle-selective disinhibition of corticomotor representations using a motor imagery-based brain-computer interface. Takemi M; Maeda T; Masakado Y; Siebner HR; Ushiba J Neuroimage; 2018 Dec; 183():597-605. PubMed ID: 30172003 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous EEG-fNIRS reveals how age and feedback affect motor imagery signatures. Zich C; Debener S; Thoene AK; Chen LC; Kranczioch C Neurobiol Aging; 2017 Jan; 49():183-197. PubMed ID: 27818001 [TBL] [Abstract][Full Text] [Related]
17. Ipsilateral EEG mu rhythm reflects the excitability of uncrossed pathways projecting to shoulder muscles. Hasegawa K; Kasuga S; Takasaki K; Mizuno K; Liu M; Ushiba J J Neuroeng Rehabil; 2017 Aug; 14(1):85. PubMed ID: 28841920 [TBL] [Abstract][Full Text] [Related]
18. Differences in hemodynamic activations between motor imagery and upper limb FES with NIRS. Schürholz M; Rana M; Robinson N; Ramos-Murguialday A; Cho W; Rohm M; Rupp R; Birbaumer N; Sitaram R Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4728-31. PubMed ID: 23366984 [TBL] [Abstract][Full Text] [Related]
19. Cortical Activations and BCI Performances at Different Speeds of Visual and Proprioceptive Stimulation. Wang M; Chen L; Wang Z; Zhang L; Gu X; Ming D Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6762-6765. PubMed ID: 31947393 [TBL] [Abstract][Full Text] [Related]
20. [Brain-computer interface-based motor imagery training for patients with neurological movement disorders]. Liburkina SP; Vasilyev AN; Kaplan AY; Ivanova GE; Chukanova AS Zh Nevrol Psikhiatr Im S S Korsakova; 2018; 118(9. Vyp. 2):63-68. PubMed ID: 30499562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]