BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 30843902)

  • 1. A fluorescent sensor for folic acid based on crown ether-bridged bis-tetraphenylethylene.
    Jiang S; Hu X; Qiu J; Guo H; Yang F
    Analyst; 2019 Apr; 144(8):2662-2669. PubMed ID: 30843902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First fluorescent sensor for curcumin in aqueous media based on acylhydrazone-bridged bis-tetraphenylethylene.
    Jiang S; Qiu J; Lin B; Guo H; Yang F
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117916. PubMed ID: 31839575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fluorescent sensor based on aggregation-induced emission: highly sensitive detection of hydrazine and its application in living cell imaging.
    Qiu J; Chen Y; Jiang S; Guo H; Yang F
    Analyst; 2018 Sep; 143(18):4298-4305. PubMed ID: 30095834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A highly selective fluorescent sensor for mercury ion (II) based on azathia-crown ether possessing a dansyl moiety.
    Dai H; Liu F; Gao Q; Fu T; Kou X
    Luminescence; 2011; 26(6):523-30. PubMed ID: 22162455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red-Emitting Fluorescence Sensors for Metal Cations: The Role of Counteranions and Sensing of SCN
    Lochman L; Machacek M; Miletin M; Uhlířová Š; Lang K; Kirakci K; Zimcik P; Novakova V
    ACS Sens; 2019 Jun; 4(6):1552-1559. PubMed ID: 31094188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent progress in the design and applications of fluorescence probes containing crown ethers.
    Li J; Yim D; Jang WD; Yoon J
    Chem Soc Rev; 2017 May; 46(9):2437-2458. PubMed ID: 27711665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double-detecting fluorescent sensor for ATP based on Cu
    Jiang S; Qiu J; Chen S; Guo H; Yang F
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 227():117568. PubMed ID: 31654844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic liquid decorated AIE luminogen for selective detection of HSA in biofluids and early disease screening.
    Gao L; Lin X; Chen X
    Talanta; 2020 May; 212():120763. PubMed ID: 32113536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorophore-Labeling Tetraphenylethene Dyes Ranging from Visible to Near-Infrared Region: AIE Behavior, Performance in Solid State, and Bioimaging in Living Cells.
    Chen W; Zhang C; Han X; Liu SH; Tan Y; Yin J
    J Org Chem; 2019 Nov; 84(22):14498-14507. PubMed ID: 31524391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid detection of hypobromous acid by a tetraphenylethylene-based turn-on fluorescent AIE probe and its applications.
    Peng M; Zhang L; Yao X; Su YB; Lu Y; Peng Y; Wang YW
    Anal Chim Acta; 2024 Jun; 1307():342642. PubMed ID: 38719399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pH responsive fluorescent probe based on dye modified i-motif nucleic acids.
    Li P; Chen Z; Huang Y; Li J; Xiao F; Zhai S; Wang Z; Zhang X; Tian L
    Org Biomol Chem; 2018 Dec; 16(48):9402-9408. PubMed ID: 30500031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel fluorescent probe for Cr(3+) based on rhodamine-crown ether conjugate and its application to drinking water examination and bioimaging.
    Diao Q; Ma P; Lv L; Li T; Wang X; Song D
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Mar; 156():15-21. PubMed ID: 26641281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Aggregation-Induced Emission-Based "Turn-On" Fluorescent Probe for Facile Detection of Gaseous Formaldehyde.
    Zhao X; Ji C; Ma L; Wu Z; Cheng W; Yin M
    ACS Sens; 2018 Oct; 3(10):2112-2117. PubMed ID: 30256619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly sensitive fluorescence detection of heparin based on aggregation-induced emission of a tetraphenylethene derivative.
    Zheng J; Ye T; Chen J; Xu L; Ji X; Yang C; He Z
    Biosens Bioelectron; 2017 Apr; 90():245-250. PubMed ID: 27914368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A light-up fluorescent probe for citrate detection based on bispyridinum amides with aggregation-induced emission feature.
    Liu C; Hang Y; Jiang T; Yang J; Zhang X; Hua J
    Talanta; 2018 Feb; 178():847-853. PubMed ID: 29136904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetraphenylethylene-based glycoconjugate as a fluorescence "turn-on" sensor for cholera toxin.
    Hu XM; Chen Q; Wang JX; Cheng QY; Yan CG; Cao J; He YJ; Han BH
    Chem Asian J; 2011 Sep; 6(9):2376-81. PubMed ID: 21748854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Functional TPE Polymers: Aggregation-Induced Emission, pH Response, and Solvatochromic Behavior.
    Huang W; Bender M; Seehafer K; Wacker I; Schröder RR; Bunz UHF
    Macromol Rapid Commun; 2019 Mar; 40(6):e1800774. PubMed ID: 30506886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paper-based fluorescent sensor via aggregation induced emission fluorogen for facile and sensitive visual detection of hydrogen peroxide and glucose.
    Chang J; Li H; Hou T; Duan W; Li F
    Biosens Bioelectron; 2018 May; 104():152-157. PubMed ID: 29331429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Execution of aggregation-induced emission as nano-sensors for hypochlorite detection and application for bioimaging in living cells and zebrafish.
    Chen H; He X; Yu Y; Qian Y; Shen J; Zhao S
    Talanta; 2020 Jul; 214():120842. PubMed ID: 32278426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sugar-aza-crown ether-based fluorescent sensor for Hg(2+) and Cu(2+).
    Hsieh YC; Chir JL; Wu HH; Chang PS; Wu AT
    Carbohydr Res; 2009 Nov; 344(16):2236-9. PubMed ID: 19765693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.