These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30844121)

  • 1. Synergy of Single-ion Conductive and Thermo-responsive Copolymer Hydrogels Achieving Anti-Arrhenius Ionic Conductivity.
    Guo S; Lei R; Liang X; Liu J; Liu X; Gao S; Peng X; Bian S; Chen Y; Jin Y; Cai S; Liu Z; Feng J
    Chem Asian J; 2019 May; 14(9):1404-1408. PubMed ID: 30844121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of High Ammonium Salt Concentration and Temperature on the Structure, Morphology, and Ionic Conductivity of Proton-Conductor Solid Polymer Electrolytes Based PVA.
    Saeed MAM; Abdullah OG
    Membranes (Basel); 2020 Sep; 10(10):. PubMed ID: 32998188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile fabrication of thermo/redox responsive hydrogels based on a dual crosslinked matrix for a smart on-off switch.
    Sun N; Sun P; Wu A; Qiao X; Lu F; Zheng L
    Soft Matter; 2018 May; 14(21):4327-4334. PubMed ID: 29761197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conductivity Scaling Relationships for Nanostructured Block Copolymer/Ionic Liquid Membranes.
    Hoarfrost ML; Segalman RA
    ACS Macro Lett; 2012 Aug; 1(8):937-943. PubMed ID: 35607047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes.
    Susan MA; Kaneko T; Noda A; Watanabe M
    J Am Chem Soc; 2005 Apr; 127(13):4976-83. PubMed ID: 15796564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Side-Chain Branching on Enhancement of Ionic Conductivity and Capacity Retention of a Solid Copolymer Electrolyte Membrane.
    Fu G; Kyu T
    Langmuir; 2017 Dec; 33(49):13973-13981. PubMed ID: 29148782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct difference in ionic transport behavior in polymer electrolytes depending on the matrix polymers and incorporated salts.
    Seki S; Susan MA; Kaneko T; Tokuda H; Noda A; Watanabe M
    J Phys Chem B; 2005 Mar; 109(9):3886-92. PubMed ID: 16851440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermo-responsive in-situ forming hydrogels as barriers to prevent post-operative peritendinous adhesion.
    Chou PY; Chen SH; Chen CH; Chen SH; Fong YT; Chen JP
    Acta Biomater; 2017 Nov; 63():85-95. PubMed ID: 28919215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion relaxation dynamics and nearly constant loss behavior in polymer electrolyte.
    Natesan B; Karan NK; Katiyar RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):042801. PubMed ID: 17155114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Model for Non-Arrhenius Ionic Conductivity.
    Aniya M; Ikeda M
    Nanomaterials (Basel); 2019 Jun; 9(6):. PubMed ID: 31238516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What can we learn from ionic conductivity measurements in polymer electrolytes? A case study on poly(ethylene oxide) (PEO)-NaI and PEO-LiTFSI.
    Stolwijk NA; Wiencierz M; Heddier C; Kösters J
    J Phys Chem B; 2012 Mar; 116(10):3065-74. PubMed ID: 22316082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conductive and Thermo-Responsive Composite Hydrogels with Poly(N-isopropylacrylamide) and Carbon Nanotubes Fabricated by Two-Step Photopolymerization.
    Ciarleglio G; Toto E; Santonicola MG
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Swellable, Dual-Responsive Hydrogels Based on PNIPAM and Redox Active Poly(ferrocenylsilane) Poly(ionic liquid)s: Synthesis, Structure, and Properties.
    Feng X; Zhang K; Chen P; Sui X; Hempenius MA; Liedberg B; Vancso GJ
    Macromol Rapid Commun; 2016 Dec; 37(23):1939-1944. PubMed ID: 27775202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ionic transport mechanism and coupling between the ion conduction and segmental relaxation processes of PEO20-LiCF3SO3 based ion conducting polymer clay composites.
    Dam T; Jena SS; Pradhan DK
    Phys Chem Chem Phys; 2016 Jul; 18(29):19955-65. PubMed ID: 27399598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithium ion conductive behavior of TiO2 nanotube/ionic liquid matrices.
    Vedarajan R; Ogawa M; Matsumi N
    Nanoscale Res Lett; 2014; 9(1):539. PubMed ID: 25313300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pressure on decoupling of ionic conductivity from structural relaxation in hydrated protic ionic liquid, lidocaine HCl.
    Swiety-Pospiech A; Wojnarowska Z; Hensel-Bielowka S; Pionteck J; Paluch M
    J Chem Phys; 2013 May; 138(20):204502. PubMed ID: 23742488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport properties of nitrile and carbonate solutions of [P66614][NTf
    Arkhipova EA; Ivanov AS; Reshetko SS; Aleshin DY; Maslakov KI; Kupreenko SY; Savilov SV
    Phys Chem Chem Phys; 2021 Oct; 23(41):23909-23921. PubMed ID: 34651626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of ion transport in perfluoropolyether electrolytes with a lithium salt.
    Timachova K; Chintapalli M; Olson KR; Mecham SJ; DeSimone JM; Balsara NP
    Soft Matter; 2017 Aug; 13(32):5389-5396. PubMed ID: 28702622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Thermo-responsiveness and Poly(ethylene glycol) Diacrylate Cross-link Density on Protein Release from Poly(N-isopropylacrylamide) Hydrogels.
    Drapala PW; Brey EM; Mieler WF; Venerus DC; Kang Derwent JJ; Pérez-Luna VH
    J Biomater Sci Polym Ed; 2011; 22(1-3):59-75. PubMed ID: 20540835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High ionic conductivity in a LiFeO2-LiAlO2 composite under H2/air fuel cell conditions.
    Lan R; Tao S
    Chemistry; 2015 Jan; 21(3):1350-8. PubMed ID: 25394201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.