These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30844138)

  • 1. In Situ Observations of Shell Growth and Oxidative Etching Behaviors of Pd Nanoparticles in Solutions by Liquid Cell Transmission Electron Microscopy.
    Su T; Wang ZL; Wang Z
    Small; 2019 Apr; 15(14):e1900050. PubMed ID: 30844138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ liquid cell electron microscopy of the solution growth of Au-Pd core-shell nanostructures.
    Jungjohann KL; Bliznakov S; Sutter PW; Stach EA; Sutter EA
    Nano Lett; 2013 Jun; 13(6):2964-70. PubMed ID: 23721080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Observation of Early Stages of Growth of Multilayered DNA-Templated Au-Pd-Au Core-Shell Nanoparticles in Liquid Phase.
    Bhattarai N; Prozorov T
    Front Bioeng Biotechnol; 2019; 7():19. PubMed ID: 30863747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of Au Nanoparticles in Liquid Cell Transmission Electron Microscopy: From a Systematic Study to Engineered Nanostructures.
    Zhang Y; Keller D; Rossell MD; Erni R
    Chem Mater; 2017 Dec; 29(24):10518-10525. PubMed ID: 29307957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of redox reaction rates and orders by in situ liquid cell electron microscopy of Pd and Au solution growth.
    Sutter EA; Sutter PW
    J Am Chem Soc; 2014 Dec; 136(48):16865-70. PubMed ID: 25407028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissolution Kinetics of Oxidative Etching of Cubic and Icosahedral Platinum Nanoparticles Revealed by in Situ Liquid Transmission Electron Microscopy.
    Wu J; Gao W; Yang H; Zuo JM
    ACS Nano; 2017 Feb; 11(2):1696-1703. PubMed ID: 28187252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rapid colorimetric detection method of trace Cr (VI) based on the redox etching of Ag(core)-Au(shell) nanoparticles at room temperature.
    Xin J; Zhang F; Gao Y; Feng Y; Chen S; Wu A
    Talanta; 2012 Nov; 101():122-7. PubMed ID: 23158300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pd@Au core-shell nanocrystals with concave cubic shapes: kinetically controlled synthesis and electrocatalytic properties.
    Zhang L; Niu W; Zhao J; Zhu S; Yuan Y; Hua L; Xu G
    Faraday Discuss; 2013; 164():175-88. PubMed ID: 24466664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions.
    Chen D; Li C; Liu H; Ye F; Yang J
    Sci Rep; 2015 Jul; 5():11949. PubMed ID: 26144550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ TEM observation of Au-Cu
    Chen FC; Chen JY; Lin YH; Kuo MY; Hsu YJ; Wu WW
    Nanoscale; 2019 May; 11(21):10486-10492. PubMed ID: 31112184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-Time Dynamics of Galvanic Replacement Reactions of Silver Nanocubes and Au Studied by Liquid-Cell Transmission Electron Microscopy.
    Tan SF; Lin G; Bosman M; Mirsaidov U; Nijhuis CA
    ACS Nano; 2016 Aug; 10(8):7689-95. PubMed ID: 27389989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Kinetic and Thermodynamic Growth Control of Au-Pd Core-Shell Nanoparticles.
    Tan SF; Bisht G; Anand U; Bosman M; Yong XE; Mirsaidov U
    J Am Chem Soc; 2018 Sep; 140(37):11680-11685. PubMed ID: 30099870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape-controlled synthesis and in situ characterisation of anisotropic Au nanomaterials using liquid cell transmission electron microscopy.
    Wang ST; Lin Y; Nielsen MH; Song CY; Thomas MR; Spicer CD; Kröger R; Ercius P; Aloni S; Stevens MM
    Nanoscale; 2019 Sep; 11(36):16801-16809. PubMed ID: 31469380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The studies on wet chemical etching via in situ liquid cell TEM.
    Sun M; Tian J; Chen Q
    Ultramicroscopy; 2021 Dec; 231():113271. PubMed ID: 33879369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unravelling the shell growth pathways of Au-Ag core-shell nanoparticles by
    Wei W; Bai T; Fu R; Sun L; Wang W; Dong M; Chen L; Guo Z; Xu F
    Nanoscale; 2021 Feb; 13(5):3136-3143. PubMed ID: 33523060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the Morphology of Au-Pd Heterodimer Nanoparticles by Surface Ligands.
    Kluenker M; Connolly BM; Marolf DM; Nawaz Tahir M; Korschelt K; Simon P; Köhler U; Plana-Ruiz S; Barton B; Panthöfer M; Kolb U; Tremel W
    Inorg Chem; 2018 Nov; 57(21):13640-13652. PubMed ID: 30289701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seed-assisted synthesis of Pd@Au core-shell nanotetrapods and their optical and catalytic properties.
    Zhao R; Gong M; Zhu H; Chen Y; Tang Y; Lu T
    Nanoscale; 2014 Aug; 6(15):9273-8. PubMed ID: 24986103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-Time Imaging of the Formation of Au-Ag Core-Shell Nanoparticles.
    Tan SF; Chee SW; Lin G; Bosman M; Lin M; Mirsaidov U; Nijhuis CA
    J Am Chem Soc; 2016 Apr; 138(16):5190-3. PubMed ID: 27043921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and catalytic properties of Au-Pd nanoflowers.
    Xu J; Wilson AR; Rathmell AR; Howe J; Chi M; Wiley BJ
    ACS Nano; 2011 Aug; 5(8):6119-27. PubMed ID: 21761821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances.
    Kuai L; Geng B; Wang S; Sang Y
    Chemistry; 2012 Jul; 18(30):9423-9. PubMed ID: 22714952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.