These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30844226)

  • 1. Fabrication of Miniature Surface Plasmon Resonance Sensor Chips by Using Confined Sessile Drop Technique.
    Nootchanat S; Jaikeandee W; Yaiwong P; Lertvachirapaiboon C; Shinbo K; Kato K; Ekgasit S; Baba A
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11954-11960. PubMed ID: 30844226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-mode surface plasmon resonance sensor chip using a grating 3D-printed prism.
    Lertvachirapaiboon C; Baba A; Shinbo K; Kato K
    Anal Chim Acta; 2021 Feb; 1147():23-29. PubMed ID: 33485581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of fracture-free nanoglassified substrates by layer-by-layer deposition with a paint gun technique for real-time monitoring of protein-lipid interactions.
    Linman MJ; Culver SP; Cheng Q
    Langmuir; 2009 Mar; 25(5):3075-82. PubMed ID: 19437774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Print-and-stick unibody microfluidics coupled surface plasmon resonance (SPR) chip for smartphone imaging SPR (Smart-iSRP).
    Xiao C; Eriksson J; Suska A; Filippini D; Mak WC
    Anal Chim Acta; 2022 Apr; 1201():339606. PubMed ID: 35300788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay.
    Lee KH; Su YD; Chen SJ; Tseng FG; Lee GB
    Biosens Bioelectron; 2007 Nov; 23(4):466-72. PubMed ID: 17618110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hard-soft microfluidic-based biosensor flow cell for SPR imaging application.
    Liu C; Cui D; Li H
    Biosens Bioelectron; 2010 Sep; 26(1):255-61. PubMed ID: 20655729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of thin films of SiO(x) on gold substrates for surface plasmon resonance studies.
    Szunerits S; Boukherroub R
    Langmuir; 2006 Feb; 22(4):1660-3. PubMed ID: 16460088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A surface plasmon resonance sensor on a compact disk-type microfluidic device.
    Hemmi A; Usui T; Moto A; Tobita T; Soh N; Nakano K; Zeng H; Uchiyama K; Imato T; Nakajima H
    J Sep Sci; 2011 Oct; 34(20):2913-9. PubMed ID: 21928434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ study of self-assembled nanocomposite films by spectral SPR sensor.
    Zhang Z; Liu J; Qi ZM; Lu DF
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():242-7. PubMed ID: 25842131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-plasmon-resonance-based optical-fiber temperature sensor with high sensitivity and high figure of merit.
    Zhu Z; Liu L; Liu Z; Zhang Y; Zhang Y
    Opt Lett; 2017 Aug; 42(15):2948-2951. PubMed ID: 28957216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adhesive bonding strategies to fabricate high-strength and transparent 3D printed microfluidic device.
    Kecili S; Tekin HC
    Biomicrofluidics; 2020 Mar; 14(2):024113. PubMed ID: 32341724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable and sensitive silver surface plasmon resonance imaging sensor using trilayered metallic structures.
    Wang Z; Cheng Z; Singh V; Zheng Z; Wang Y; Li S; Song L; Zhu J
    Anal Chem; 2014 Feb; 86(3):1430-6. PubMed ID: 24372308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sol-gel modified poly(dimethylsiloxane) microfluidic devices with high electroosmotic mobilities and hydrophilic channel wall characteristics.
    Roman GT; Hlaus T; Bass KJ; Seelhammer TG; Culbertson CT
    Anal Chem; 2005 Mar; 77(5):1414-22. PubMed ID: 15732926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quality assessment of SPR sensor chips; case study on L1 chips.
    Olaru A; Gheorghiu M; David S; Polonschii C; Gheorghiu E
    Biosens Bioelectron; 2013 Jul; 45():77-81. PubMed ID: 23455045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel miniature SPR immunosensor equipped with all-in-one multi-microchannel sensor chip for detecting low-molecular-weight analytes.
    Kim SJ; Gobi KV; Iwasaka H; Tanaka H; Miura N
    Biosens Bioelectron; 2007 Dec; 23(5):701-7. PubMed ID: 17890075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A palm-sized surface plasmon resonance sensor with microchip flow cell.
    Nakajima H; Harada Y; Asano Y; Nakagama T; Uchiyama K; Imato T; Soh N; Hemmi A
    Talanta; 2006 Sep; 70(2):419-25. PubMed ID: 18970786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-channel fiber surface plasmon resonance sensor based on a metallized core.
    Wei Y; Li L; Liu C; Su Y; Zhao X; Wu P; Hu J; Wang R; Ran Z; Zhu D
    Appl Opt; 2021 Feb; 60(5):1366-1372. PubMed ID: 33690580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Twin-core fiber SPR sensor.
    Liu Z; Wei Y; Zhang Y; Zhang Y; Zhao E; Yang J; Yuan L
    Opt Lett; 2015 Jun; 40(12):2826-9. PubMed ID: 26076272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface plasmon resonance-based highly sensitive optical touch sensor with a hybrid noise rejection scheme.
    Sumriddetchkajorn S; Chaitavon K
    Appl Opt; 2006 Jan; 45(1):172-7. PubMed ID: 16425458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of PDMS and NOA Microfluidic Chips: Deformation, Roughness, Hydrophilicity and Flow Performance.
    Turcitu T; Armstrong CJK; Lee-Yow N; Salame M; Le AV; Fenech M
    Micromachines (Basel); 2023 Oct; 14(11):. PubMed ID: 38004890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.