These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 30844239)

  • 1. Solvent-Assisted Self-Assembly of Gold Nanorods into Hierarchically Organized Plasmonic Mesostructures.
    Hanske C; Hill EH; Vila-Liarte D; González-Rubio G; Matricardi C; Mihi A; Liz-Marzán LM
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11763-11771. PubMed ID: 30844239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold Nanoparticle Plasmonic Superlattices as Surface-Enhanced Raman Spectroscopy Substrates.
    Matricardi C; Hanske C; Garcia-Pomar JL; Langer J; Mihi A; Liz-Marzán LM
    ACS Nano; 2018 Aug; 12(8):8531-8539. PubMed ID: 30106555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Supercrystals.
    García-Lojo D; Núñez-Sánchez S; Gómez-Graña S; Grzelczak M; Pastoriza-Santos I; Pérez-Juste J; Liz-Marzán LM
    Acc Chem Res; 2019 Jul; 52(7):1855-1864. PubMed ID: 31243968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-Enhanced Raman Spectroscopy on Liquid Interfacial Nanoparticle Arrays for Multiplex Detecting Drugs in Urine.
    Ma Y; Liu H; Mao M; Meng J; Yang L; Liu J
    Anal Chem; 2016 Aug; 88(16):8145-51. PubMed ID: 27401135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-Plane Surface Lattice and Higher Order Resonances in Self-Assembled Plasmonic Monolayers: From Substrate-Supported to Free-Standing Thin Films.
    Volk K; Fitzgerald JPS; Karg M
    ACS Appl Mater Interfaces; 2019 May; 11(17):16096-16106. PubMed ID: 30945839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial Colloidal Self-Assembly for Functional Materials.
    Hou S; Bai L; Lu D; Duan H
    Acc Chem Res; 2023 Apr; 56(7):740-751. PubMed ID: 36920352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oriented Gold Nanorod Arrays: Self-Assembly and Optoelectronic Applications.
    Wei W; Bai F; Fan H
    Angew Chem Int Ed Engl; 2019 Aug; 58(35):11956-11966. PubMed ID: 30913343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical organization and molecular diffusion in gold nanorod/silica supercrystal nanocomposites.
    Hamon C; Sanz-Ortiz MN; Modin E; Hill EH; Scarabelli L; Chuvilin A; Liz-Marzán LM
    Nanoscale; 2016 Apr; 8(15):7914-22. PubMed ID: 26961684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining 3-D plasmonic gold nanorod arrays with colloidal nanoparticles as a versatile concept for reliable, sensitive, and selective molecular detection by SERS.
    Yilmaz M; Senlik E; Biskin E; Yavuz MS; Tamer U; Demirel G
    Phys Chem Chem Phys; 2014 Mar; 16(12):5563-70. PubMed ID: 24514029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Enrichment and Self-Assembly of Hybrid Nanoparticles into Removable and Magnetic SERS Substrates for Sensitive Detection of Environmental Pollutants.
    Tang S; Li Y; Huang H; Li P; Guo Z; Luo Q; Wang Z; Chu PK; Li J; Yu XF
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7472-7480. PubMed ID: 28181793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical self-assembly of gold nanoparticles into patterned plasmonic nanostructures.
    Hamon C; Novikov S; Scarabelli L; Basabe-Desmonts L; Liz-Marzán LM
    ACS Nano; 2014 Oct; 8(10):10694-703. PubMed ID: 25263238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical Assembly of Plasmonic Nanoparticle Heterodimer Arrays with Tunable Sub-5 nm Nanogaps.
    Li J; Deng TS; Liu X; Dolan JA; Scherer NF; Nealey PF
    Nano Lett; 2019 Jul; 19(7):4314-4320. PubMed ID: 31184897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Lattice Resonances in Self-Assembled Arrays of Monodisperse Ag Cuboctahedra.
    Juodėnas M; Tamulevičius T; Henzie J; Erts D; Tamulevičius S
    ACS Nano; 2019 Aug; 13(8):9038-9047. PubMed ID: 31329417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tackling the Scalability Challenge in Plasmonics by Wrinkle-Assisted Colloidal Self-Assembly.
    Yu Y; Ng C; König TAF; Fery A
    Langmuir; 2019 Jul; 35(26):8629-8645. PubMed ID: 30883131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of self-assembled gold nanoparticle supercrystals with facet-dependent surface plasmonic coupling.
    Bian K; Schunk H; Ye D; Hwang A; Luk TS; Li R; Wang Z; Fan H
    Nat Commun; 2018 Jun; 9(1):2365. PubMed ID: 29915321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering 3D Nanoplasmonic Assemblies for High Performance Spectroscopic Sensing.
    Dinda S; Suresh V; Thoniyot P; Balčytis A; Juodkazis S; Krishnamoorthy S
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27661-6. PubMed ID: 26523480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling the symmetry of supercrystals formed by plasmonic core-shell nanorods with tunable cross-section.
    Hamon C; Goldmann C; Constantin D
    Nanoscale; 2018 Oct; 10(38):18362-18369. PubMed ID: 30255915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface assembly and plasmonic properties in strongly coupled segmented gold nanorods.
    Gupta MK; König T; Near R; Nepal D; Drummy LF; Biswas S; Naik S; Vaia RA; El-Sayed MA; Tsukruk VV
    Small; 2013 Sep; 9(17):2979-90. PubMed ID: 23495078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalization of Self-Assembly Toward Differently Shaped Colloidal Nanoparticles for Plasmonic Superlattices.
    Charconnet M; Korsa MT; Petersen S; Plou J; Hanske C; Adam J; Seifert A
    Small Methods; 2023 Apr; 7(4):e2201546. PubMed ID: 36807876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.