BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30844376)

  • 1. Assessment of West nile virus transmission risk from a weather-dependent epidemiological model and a global sensitivity analysis framework.
    Kioutsioukis I; Stilianakis NI
    Acta Trop; 2019 May; 193():129-141. PubMed ID: 30844376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary.
    Lin Z; Zhu H
    J Math Biol; 2017 Dec; 75(6-7):1381-1409. PubMed ID: 28378145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling West Nile virus transmission risk in Europe: effect of temperature and mosquito biotypes on the basic reproduction number.
    Vogels CBF; Hartemink N; Koenraadt CJM
    Sci Rep; 2017 Jul; 7(1):5022. PubMed ID: 28694450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Integrative Eco-Epidemiological Analysis of West Nile Virus Transmission.
    Tran A; L'Ambert G; Balança G; Pradier S; Grosbois V; Balenghien T; Baldet T; Lecollinet S; Leblond A; Gaidet-Drapier N
    Ecohealth; 2017 Sep; 14(3):474-489. PubMed ID: 28584951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of temperature on the boundary conditions of West Nile virus circulation in Europe.
    de Freitas Costa E; Streng K; Avelino de Souza Santos M; Counotte MJ
    PLoS Negl Trop Dis; 2024 May; 18(5):e0012162. PubMed ID: 38709836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding West Nile virus transmission: Mathematical modelling to quantify the most critical parameters to predict infection dynamics.
    Fesce E; Marini G; Rosà R; Lelli D; Cerioli MP; Chiari M; Farioli M; Ferrari N
    PLoS Negl Trop Dis; 2023 May; 17(5):e0010252. PubMed ID: 37126524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and validation of a climate-based ensemble prediction model for West Nile Virus infection rates in Culex mosquitoes, Suffolk County, New York.
    Little E; Campbell SR; Shaman J
    Parasit Vectors; 2016 Aug; 9(1):443. PubMed ID: 27507279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ensemble forecast of human West Nile virus cases and mosquito infection rates.
    DeFelice NB; Little E; Campbell SR; Shaman J
    Nat Commun; 2017 Feb; 8():14592. PubMed ID: 28233783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The human and animal health impacts of introduction and spread of an exotic strain of West Nile virus in Australia.
    Hernández-Jover M; Roche S; Ward MP
    Prev Vet Med; 2013 May; 109(3-4):186-204. PubMed ID: 23098914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecology of West Nile virus across four European countries: empirical modelling of the Culex pipiens abundance dynamics as a function of weather.
    Groen TA; L'Ambert G; Bellini R; Chaskopoulou A; Petric D; Zgomba M; Marrama L; Bicout DJ
    Parasit Vectors; 2017 Oct; 10(1):524. PubMed ID: 29070056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of maturation delay of mosquitoes on the transmission of West Nile virus.
    Fan G; Liu J; van den Driessche P; Wu J; Zhu H
    Math Biosci; 2010 Dec; 228(2):119-26. PubMed ID: 20828577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecology of West Nile virus across four European countries: review of weather profiles, vector population dynamics and vector control response.
    Chaskopoulou A; L'Ambert G; Petric D; Bellini R; Zgomba M; Groen TA; Marrama L; Bicout DJ
    Parasit Vectors; 2016 Sep; 9(1):482. PubMed ID: 27590848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of bird-to-bird transmission for the establishment of West Nile virus.
    Hartemink NA; Davis SA; Reiter P; Hubálek Z; Heesterbeek JA
    Vector Borne Zoonotic Dis; 2007; 7(4):575-84. PubMed ID: 17979541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. West Nile virus in host-seeking mosquitoes within a residential neighborhood in Grand Forks, North Dakota.
    Bell JA; Mickelson NJ; Vaughan JA
    Vector Borne Zoonotic Dis; 2005; 5(4):373-82. PubMed ID: 16417433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative comparison of West Nile virus incidence from 2013 to 2018 in Emilia-Romagna, Italy.
    Marini G; Calzolari M; Angelini P; Bellini R; Bellini S; Bolzoni L; Torri D; Defilippo F; Dorigatti I; Nikolay B; Pugliese A; Rosà R; Tamba M
    PLoS Negl Trop Dis; 2020 Jan; 14(1):e0007953. PubMed ID: 31895933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate change impacts on West Nile virus transmission in a global context.
    Paz S
    Philos Trans R Soc Lond B Biol Sci; 2015 Apr; 370(1665):. PubMed ID: 25688020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Birds, mosquitoes and West Nile virus: little risk of West Nile fever in the Netherlands].
    Duijster JW; Stroo CJ; Braks MA
    Ned Tijdschr Geneeskd; 2016; 160():A9899. PubMed ID: 26758362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Demography, Land Use, and Urban Form on West Nile Virus Risk and Human West Nile Virus Incidence in Ottawa, Canada.
    Talbot B; Ardis M; Kulkarni MA
    Vector Borne Zoonotic Dis; 2019 Jul; 19(7):533-539. PubMed ID: 30615572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmission Dynamics of the West Nile Virus in Mosquito Vector Populations under the Influence of Weather Factors in the Danube Delta, Romania.
    Cotar AI; Falcuta E; Prioteasa LF; Dinu S; Ceianu CS; Paz S
    Ecohealth; 2016 Dec; 13(4):796-807. PubMed ID: 27709311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting West Nile Virus Infection Risk From the Synergistic Effects of Rainfall and Temperature.
    Shand L; Brown WM; Chaves LF; Goldberg TL; Hamer GL; Haramis L; Kitron U; Walker ED; Ruiz MO
    J Med Entomol; 2016 Jul; 53(4):935-944. PubMed ID: 27113111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.