These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 30844431)

  • 1. Balancing the non-linear rosmarinic acid biosynthetic pathway by modular co-culture engineering.
    Li Z; Wang X; Zhang H
    Metab Eng; 2019 Jul; 54():1-11. PubMed ID: 30844431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constructing E. coli Co-Cultures for De Novo Biosynthesis of Natural Product Acacetin.
    Wang X; Shao A; Li Z; Policarpio L; Zhang H
    Biotechnol J; 2020 Sep; 15(9):e2000131. PubMed ID: 32573941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo biosynthesis of complex natural product sakuranetin using modular co-culture engineering.
    Wang X; Li Z; Policarpio L; Koffas MAG; Zhang H
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4849-4861. PubMed ID: 32285175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of a chimeric biosynthetic pathway for the de novo biosynthesis of rosmarinic acid in Escherichia coli.
    Bloch SE; Schmidt-Dannert C
    Chembiochem; 2014 Nov; 15(16):2393-401. PubMed ID: 25205019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and optimization of a microbial co-culture system for heterologous indigo biosynthesis.
    Chen T; Wang X; Zhuang L; Shao A; Lu Y; Zhang H
    Microb Cell Fact; 2021 Aug; 20(1):154. PubMed ID: 34348711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modular co-culture engineering, a new approach for metabolic engineering.
    Zhang H; Wang X
    Metab Eng; 2016 Sep; 37():114-121. PubMed ID: 27242132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-culture engineering for microbial biosynthesis of 3-amino-benzoic acid in Escherichia coli.
    Zhang H; Stephanopoulos G
    Biotechnol J; 2016 Jul; 11(7):981-7. PubMed ID: 27168529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered synthesis of rosmarinic acid in Escherichia coli resulting production of a new intermediate, caffeoyl-phenyllactate.
    Jiang J; Bi H; Zhuang Y; Liu S; Liu T; Ma Y
    Biotechnol Lett; 2016 Jan; 38(1):81-8. PubMed ID: 26337416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in heterologous biosynthesis of plant and fungal natural products by modular co-culture engineering.
    Chen T; Zhou Y; Lu Y; Zhang H
    Biotechnol Lett; 2019 Jan; 41(1):27-34. PubMed ID: 30382453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing
    Wang X; Policarpio L; Prajapati D; Li Z; Zhang H
    Metab Eng Commun; 2020 Jun; 10():e00110. PubMed ID: 31853442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The c4h, tat, hppr and hppd genes prompted engineering of rosmarinic acid biosynthetic pathway in Salvia miltiorrhiza hairy root cultures.
    Xiao Y; Zhang L; Gao S; Saechao S; Di P; Chen J; Chen W
    PLoS One; 2011; 6(12):e29713. PubMed ID: 22242141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous biosynthesis of natural product naringenin by co-culture engineering.
    Ganesan V; Li Z; Wang X; Zhang H
    Synth Syst Biotechnol; 2017 Sep; 2(3):236-242. PubMed ID: 29318204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic Engineering of
    Babaei M; Borja Zamfir GM; Chen X; Christensen HB; Kristensen M; Nielsen J; Borodina I
    ACS Synth Biol; 2020 Aug; 9(8):1978-1988. PubMed ID: 32589831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced rosmarinic acid biosynthesis in Solenostemon scutellarioides culture: a precursor-feeding strategy.
    Dewanjee S; Gangopadhyay M; Das U; Sahu R; Khanra R
    Nat Prod Res; 2014; 28(20):1691-8. PubMed ID: 25051064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Level Biosynthesis of Chlorogenic Acid from Mixed Carbon Sources of Xylose and Glucose through a Rationally Refactored Pathway Network.
    Wang Y; Tan H; Wang Y; Qin JL; Zhao X; Di Y; Xie L; Wang Y; Zhao X; Li Z; Ma G; Jiang L; Liu B; Huang D
    J Agric Food Chem; 2024 Feb; 72(7):3633-3643. PubMed ID: 38330270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of rosmarinic acid analogues in Escherichia coli.
    Zhuang Y; Jiang J; Bi H; Yin H; Liu S; Liu T
    Biotechnol Lett; 2016 Apr; 38(4):619-27. PubMed ID: 26667131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in modular co-culture engineering for synthesis of natural products.
    Wang R; Zhao S; Wang Z; Koffas MA
    Curr Opin Biotechnol; 2020 Apr; 62():65-71. PubMed ID: 31605875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of growth regulators and sucrose concentrations on growth and rosmarinic acid production in calli and suspension cultures of Coleus blumei.
    Qian J; Guiping L; Xiujun L; Xincai H; Hongmei L
    Nat Prod Res; 2009; 23(2):127-37. PubMed ID: 19173121
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Xu Y; Geng L; Zhang Y; Jones JA; Zhang M; Chen Y; Tan R; Koffas MAG; Wang Z; Zhao S
    J Agric Food Chem; 2022 Feb; 70(7):2290-2302. PubMed ID: 35157428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering E. coli-E. coli cocultures for production of muconic acid from glycerol.
    Zhang H; Li Z; Pereira B; Stephanopoulos G
    Microb Cell Fact; 2015 Sep; 14():134. PubMed ID: 26369810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.