These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 3084444)

  • 21. Inspiratory-to-expiratory time ratio and alveolar ventilation during high-frequency ventilation in dogs.
    Yamada Y; Hales CA; Venegas JG
    J Appl Physiol (1985); 1986 Nov; 61(5):1903-7. PubMed ID: 3096949
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pulmonary gas mixing during spontaneous breathing and at high-frequency ventilation.
    Ben Jebriá A
    Int J Biomed Comput; 1984; 15(1):35-50. PubMed ID: 6698634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A model of constant-flow ventilation in a dog lung.
    Ingenito E; Kamm RD; Watson JW; Slutsky AS
    J Appl Physiol (1985); 1988 May; 64(5):2150-9. PubMed ID: 3391914
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Longitudinal dispersion in model of central airways during high-frequency ventilation.
    van der Kooij AM; Luijendijk SC
    Respir Physiol; 1991 Apr; 84(1):13-29. PubMed ID: 1852987
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of mean airway pressure on gas transport during high-frequency ventilation in dogs.
    Yamada Y; Venegas JG; Strieder DJ; Hales CA
    J Appl Physiol (1985); 1986 Nov; 61(5):1896-902. PubMed ID: 3096948
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Respiratory and inert gas exchange during high-frequency ventilation.
    Robertson HT; Coffey RL; Standaert TA; Truog WE
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Mar; 52(3):683-9. PubMed ID: 6279546
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oscillatory flow and gas transport through a symmetrical bifurcation.
    Fujioka H; Oka K; Tanishita K
    J Biomech Eng; 2001 Apr; 123(2):145-53. PubMed ID: 11340875
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bolus contaminant dispersion in oscillating flow in curved tubes.
    Eckmann DM
    J Biomech Eng; 1998 Apr; 120(2):238-44. PubMed ID: 10412385
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of assisted ventilation on the work of breathing: volume-controlled versus pressure-controlled ventilation.
    Cinnella G; Conti G; Lofaso F; Lorino H; Harf A; Lemaire F; Brochard L
    Am J Respir Crit Care Med; 1996 Mar; 153(3):1025-33. PubMed ID: 8630541
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Model of gas transport during high-frequency ventilation.
    Permutt S; Mitzner W; Weinmann G
    J Appl Physiol (1985); 1985 Jun; 58(6):1956-70. PubMed ID: 4008415
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Airway cross section strongly influences alveolar plateau slope of capnograms for smaller tidal volumes.
    Huang JW; Yang GC; Scherer PW; Neufeld GR
    Respir Physiol; 2000 Jan; 119(1):51-5. PubMed ID: 10701707
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Factors of tidal volume variation during augmented spontaneous ventilation in patients on extracorporeal carbon dioxide removal. A multivariate analysis.
    Bein T; Müller T; Graf BM; Philipp A; Zeman F; Schultz MJ; Slutsky AS; Weber-Carstens S
    Minerva Anestesiol; 2015 Jan; 81(1):28-32. PubMed ID: 24878875
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Frequency, tidal volume, and mean airway pressure combinations that provide adequate gas exchange and low alveolar pressure during high frequency oscillatory ventilation in rabbits.
    Kamitsuka MD; Boynton BR; Villanueva D; Vreeland PN; Frantz ID
    Pediatr Res; 1990 Jan; 27(1):64-9. PubMed ID: 2104970
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gas transport and pulmonary perfusion during high-frequency ventilation in humans.
    Rehder K; Didier EP
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Oct; 57(4):1231-7. PubMed ID: 6501033
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Setting the frequency-tidal volume pattern.
    MacIntyre NR
    Respir Care; 2002 Mar; 47(3):266-74; discussion 274-8. PubMed ID: 11874606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CO2 elimination as a function of frequency and tidal volume in rabbits during HFO.
    Watson JW; Jackson AC
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Aug; 57(2):354-9. PubMed ID: 6432752
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of inspiratory flow rate on the efficiency of carbon dioxide removal at tidal volumes below instrumental dead space.
    Hurley EH; Keszler M
    Arch Dis Child Fetal Neonatal Ed; 2017 Mar; 102(2):F126-F130. PubMed ID: 27515984
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gas dispersion in volume-cycled tube flow. II. Tracer bolus experiments.
    Gaver DP; Solway J; Punjabi N; Elad D; Grotberg JB; Gavriely N
    J Appl Physiol (1985); 1992 Jan; 72(1):321-31. PubMed ID: 1537733
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relationship for gas transport during high-frequency ventilation in dogs.
    Venegas JG; Custer J; Kamm RD; Hales CA
    J Appl Physiol (1985); 1985 Nov; 59(5):1539-47. PubMed ID: 4066585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of the endotracheal tube on CO2 transport during high-frequency ventilation.
    Rossing TH; Solway J; Saari AF; Gavriely N; Slutsky AS; Lehr JL; Drazen JM
    Am Rev Respir Dis; 1984 Jan; 129(1):54-7. PubMed ID: 6422812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.