These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 30844724)
1. Recent advances in understanding of amino acid signaling to mTORC1 activation. Zhuang Y; Wang XX; He J; He S; Yin Y Front Biosci (Landmark Ed); 2019 Mar; 24(5):971-982. PubMed ID: 30844724 [TBL] [Abstract][Full Text] [Related]
2. Sensors for the mTORC1 pathway regulated by amino acids. Li XZ; Yan XH J Zhejiang Univ Sci B; 2019 Sept.; 20(9):699-712. PubMed ID: 31379141 [TBL] [Abstract][Full Text] [Related]
3. Amino Acid Sensing by mTORC1: Intracellular Transporters Mark the Spot. Goberdhan DC; Wilson C; Harris AL Cell Metab; 2016 Apr; 23(4):580-9. PubMed ID: 27076075 [TBL] [Abstract][Full Text] [Related]
4. Amino Acid-Dependent mTORC1 Regulation by the Lysosomal Membrane Protein SLC38A9. Jung J; Genau HM; Behrends C Mol Cell Biol; 2015 Jul; 35(14):2479-94. PubMed ID: 25963655 [TBL] [Abstract][Full Text] [Related]
6. Proton-assisted amino acid transporter PAT1 complexes with Rag GTPases and activates TORC1 on late endosomal and lysosomal membranes. Ögmundsdóttir MH; Heublein S; Kazi S; Reynolds B; Visvalingam SM; Shaw MK; Goberdhan DC PLoS One; 2012; 7(5):e36616. PubMed ID: 22574197 [TBL] [Abstract][Full Text] [Related]
7. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Sancak Y; Bar-Peled L; Zoncu R; Markhard AL; Nada S; Sabatini DM Cell; 2010 Apr; 141(2):290-303. PubMed ID: 20381137 [TBL] [Abstract][Full Text] [Related]
8. Coordination of the leucine-sensing Rag GTPase cycle by leucyl-tRNA synthetase in the mTORC1 signaling pathway. Lee M; Kim JH; Yoon I; Lee C; Fallahi Sichani M; Kang JS; Kang J; Guo M; Lee KY; Han G; Kim S; Han JM Proc Natl Acad Sci U S A; 2018 Jun; 115(23):E5279-E5288. PubMed ID: 29784813 [TBL] [Abstract][Full Text] [Related]
9. Regulation of mTORC1 by the Rag GTPases. Lama-Sherpa TD; Jeong MH; Jewell JL Biochem Soc Trans; 2023 Apr; 51(2):655-664. PubMed ID: 36929165 [TBL] [Abstract][Full Text] [Related]
10. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Zoncu R; Bar-Peled L; Efeyan A; Wang S; Sancak Y; Sabatini DM Science; 2011 Nov; 334(6056):678-83. PubMed ID: 22053050 [TBL] [Abstract][Full Text] [Related]
12. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Wang S; Tsun ZY; Wolfson RL; Shen K; Wyant GA; Plovanich ME; Yuan ED; Jones TD; Chantranupong L; Comb W; Wang T; Bar-Peled L; Zoncu R; Straub C; Kim C; Park J; Sabatini BL; Sabatini DM Science; 2015 Jan; 347(6218):188-94. PubMed ID: 25567906 [TBL] [Abstract][Full Text] [Related]
13. Glutamine and asparagine activate mTORC1 independently of Rag GTPases. Meng D; Yang Q; Wang H; Melick CH; Navlani R; Frank AR; Jewell JL J Biol Chem; 2020 Mar; 295(10):2890-2899. PubMed ID: 32019866 [TBL] [Abstract][Full Text] [Related]
14. Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex. Castellano BM; Thelen AM; Moldavski O; Feltes M; van der Welle RE; Mydock-McGrane L; Jiang X; van Eijkeren RJ; Davis OB; Louie SM; Perera RM; Covey DF; Nomura DK; Ory DS; Zoncu R Science; 2017 Mar; 355(6331):1306-1311. PubMed ID: 28336668 [TBL] [Abstract][Full Text] [Related]
15. PAT4 levels control amino-acid sensitivity of rapamycin-resistant mTORC1 from the Golgi and affect clinical outcome in colorectal cancer. Fan SJ; Snell C; Turley H; Li JL; McCormick R; Perera SM; Heublein S; Kazi S; Azad A; Wilson C; Harris AL; Goberdhan DC Oncogene; 2016 Jun; 35(23):3004-15. PubMed ID: 26434594 [TBL] [Abstract][Full Text] [Related]
16. SLC38A9: A lysosomal amino acid transporter at the core of the amino acid-sensing machinery that controls MTORC1. Rebsamen M; Superti-Furga G Autophagy; 2016 Jun; 12(6):1061-2. PubMed ID: 26431368 [TBL] [Abstract][Full Text] [Related]
17. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Rebsamen M; Pochini L; Stasyk T; de Araújo ME; Galluccio M; Kandasamy RK; Snijder B; Fauster A; Rudashevskaya EL; Bruckner M; Scorzoni S; Filipek PA; Huber KV; Bigenzahn JW; Heinz LX; Kraft C; Bennett KL; Indiveri C; Huber LA; Superti-Furga G Nature; 2015 Mar; 519(7544):477-81. PubMed ID: 25561175 [TBL] [Abstract][Full Text] [Related]
18. The GATOR-Rag GTPase pathway inhibits mTORC1 activation by lysosome-derived amino acids. Hesketh GG; Papazotos F; Pawling J; Rajendran D; Knight JDR; Martinez S; Taipale M; Schramek D; Dennis JW; Gingras AC Science; 2020 Oct; 370(6514):351-356. PubMed ID: 33060361 [TBL] [Abstract][Full Text] [Related]
19. Sestrins inhibit mTORC1 kinase activation through the GATOR complex. Parmigiani A; Nourbakhsh A; Ding B; Wang W; Kim YC; Akopiants K; Guan KL; Karin M; Budanov AV Cell Rep; 2014 Nov; 9(4):1281-91. PubMed ID: 25457612 [TBL] [Abstract][Full Text] [Related]