These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
364 related articles for article (PubMed ID: 30844776)
1. Electrospinning of highly porous yet mechanically functional microfibrillar scaffolds at the human scale for ligament and tendon tissue engineering. Olvera D; Schipani R; Sathy BN; Kelly DJ Biomed Mater; 2019 Apr; 14(3):035016. PubMed ID: 30844776 [TBL] [Abstract][Full Text] [Related]
2. Hierarchical electrospun tendon-ligament bioinspired scaffolds induce changes in fibroblasts morphology under static and dynamic conditions. Sensini A; Cristofolini L; Zucchelli A; Focarete ML; Gualandi C; DE Mori A; Kao AP; Roldo M; Blunn G; Tozzi G J Microsc; 2020 Mar; 277(3):160-169. PubMed ID: 31339556 [TBL] [Abstract][Full Text] [Related]
3. Mechanically-enhanced three-dimensional scaffold with anisotropic morphology for tendon regeneration. Wu Y; Wang Z; Fuh JY; Wong YS; Wang W; Thian ES J Mater Sci Mater Med; 2016 Jul; 27(7):115. PubMed ID: 27215211 [TBL] [Abstract][Full Text] [Related]
4. Modulating microfibrillar alignment and growth factor stimulation to regulate mesenchymal stem cell differentiation. Olvera D; Sathy BN; Carroll SF; Kelly DJ Acta Biomater; 2017 Dec; 64():148-160. PubMed ID: 29017973 [TBL] [Abstract][Full Text] [Related]
5. Bicomponent electrospinning to fabricate three-dimensional hydrogel-hybrid nanofibrous scaffolds with spatial fiber tortuosity. Jin G; Lee S; Kim SH; Kim M; Jang JH Biomed Microdevices; 2014 Dec; 16(6):793-804. PubMed ID: 24972552 [TBL] [Abstract][Full Text] [Related]
6. Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering. Sahoo S; Cho-Hong JG; Siew-Lok T Biomed Mater; 2007 Sep; 2(3):169-73. PubMed ID: 18458468 [TBL] [Abstract][Full Text] [Related]
7. Braided and Stacked Electrospun Nanofibrous Scaffolds for Tendon and Ligament Tissue Engineering. Rothrauff BB; Lauro BB; Yang G; Debski RE; Musahl V; Tuan RS Tissue Eng Part A; 2017 May; 23(9-10):378-389. PubMed ID: 28071988 [TBL] [Abstract][Full Text] [Related]
8. The effect of melt electrospun writing fiber orientation onto cellular organization and mechanical properties for application in Anterior Cruciate Ligament tissue engineering. Gwiazda M; Kumar S; Świeszkowski W; Ivanovski S; Vaquette C J Mech Behav Biomed Mater; 2020 Apr; 104():103631. PubMed ID: 32174392 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and characterization of polycaprolactone for anterior cruciate ligament regeneration. Gurlek AC; Sevinc B; Bayrak E; Erisken C Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():820-826. PubMed ID: 27987777 [TBL] [Abstract][Full Text] [Related]
11. Jenkins TL; Meehan S; Pourdeyhimi B; Little D Tissue Eng Part A; 2017 Sep; 23(17-18):958-967. PubMed ID: 28816097 [TBL] [Abstract][Full Text] [Related]
12. Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning. Soliman S; Pagliari S; Rinaldi A; Forte G; Fiaccavento R; Pagliari F; Franzese O; Minieri M; Di Nardo P; Licoccia S; Traversa E Acta Biomater; 2010 Apr; 6(4):1227-37. PubMed ID: 19887125 [TBL] [Abstract][Full Text] [Related]
13. Electrospun meshes possessing region-wise differences in fiber orientation, diameter, chemistry and mechanical properties for engineering bone-ligament-bone tissues. Samavedi S; Vaidya P; Gaddam P; Whittington AR; Goldstein AS Biotechnol Bioeng; 2014 Dec; 111(12):2549-59. PubMed ID: 24898875 [TBL] [Abstract][Full Text] [Related]
14. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications. Stefani I; Cooper-White JJ Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522 [TBL] [Abstract][Full Text] [Related]
15. Font Tellado S; Bonani W; Balmayor ER; Foehr P; Motta A; Migliaresi C; van Griensven M Tissue Eng Part A; 2017 Aug; 23(15-16):859-872. PubMed ID: 28330431 [TBL] [Abstract][Full Text] [Related]
16. Mesenchymal stem cell interacted with PLCL braided scaffold coated with poly-l-lysine/hyaluronic acid for ligament tissue engineering. Liu X; Laurent C; Du Q; Targa L; Cauchois G; Chen Y; Wang X; de Isla N J Biomed Mater Res A; 2018 Dec; 106(12):3042-3052. PubMed ID: 30194699 [TBL] [Abstract][Full Text] [Related]
17. Microstructure-dependent mechanical properties of electrospun core-shell scaffolds at multi-scale levels. Horner CB; Ico G; Johnson J; Zhao Y; Nam J J Mech Behav Biomed Mater; 2016 Jun; 59():207-219. PubMed ID: 26774618 [TBL] [Abstract][Full Text] [Related]
18. Biomimetic grafts from ultrafine fibers for collagenous tissues. Mukasheva F; Zhanbassynova A; Erisken C Biomed Mater Eng; 2024; 35(3):323-335. PubMed ID: 38393888 [TBL] [Abstract][Full Text] [Related]
19. Braided nanofibrous scaffold for tendon and ligament tissue engineering. Barber JG; Handorf AM; Allee TJ; Li WJ Tissue Eng Part A; 2013 Jun; 19(11-12):1265-74. PubMed ID: 21895485 [TBL] [Abstract][Full Text] [Related]
20. Polydopamine Inter-Fiber Networks: New Strategy for Producing Rigid, Sticky, 3D Fluffy Electrospun Fibrous Polycaprolactone Sponges. Choi W; Lee S; Kim SH; Jang JH Macromol Biosci; 2016 Jun; 16(6):824-35. PubMed ID: 26855375 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]