These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
364 related articles for article (PubMed ID: 30844776)
41. Mechano-morphological studies of aligned nanofibrous scaffolds of polycaprolactone fabricated by electrospinning. Thomas V; Jose MV; Chowdhury S; Sullivan JF; Dean DR; Vohra YK J Biomater Sci Polym Ed; 2006; 17(9):969-84. PubMed ID: 17094636 [TBL] [Abstract][Full Text] [Related]
42. Needleless electrospun and centrifugal spun poly-ε-caprolactone scaffolds as a carrier for platelets in tissue engineering applications: A comparative study with hMSCs. Lukášová V; Buzgo M; Vocetková K; Sovková V; Doupník M; Himawan E; Staffa A; Sedláček R; Chlup H; Rustichelli F; Amler E; Rampichová M Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():567-575. PubMed ID: 30678943 [TBL] [Abstract][Full Text] [Related]
43. Tuning electrospinning parameters for production of 3D-fiber-fleeces with increased porosity for soft tissue engineering applications. Milleret V; Simona B; Neuenschwander P; Hall H Eur Cell Mater; 2011 Mar; 21():286-303. PubMed ID: 21432783 [TBL] [Abstract][Full Text] [Related]
44. Aligned poly(L-lactic-co-e-caprolactone) electrospun microfibers and knitted structure: a novel composite scaffold for ligament tissue engineering. Vaquette C; Kahn C; Frochot C; Nouvel C; Six JL; De Isla N; Luo LH; Cooper-White J; Rahouadj R; Wang X J Biomed Mater Res A; 2010 Sep; 94(4):1270-82. PubMed ID: 20694995 [TBL] [Abstract][Full Text] [Related]
45. A dual-phase scaffold produced by rotary jet spinning and electrospinning for tendon tissue engineering. Guner MB; Dalgic AD; Tezcaner A; Yilanci S; Keskin D Biomed Mater; 2020 Oct; 15(6):065014. PubMed ID: 32438362 [TBL] [Abstract][Full Text] [Related]
46. Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering. Dalgic AD; Atila D; Karatas A; Tezcaner A; Keskin D Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():735-746. PubMed ID: 30948111 [TBL] [Abstract][Full Text] [Related]
47. A combined compression molding, heating, and leaching process for fabrication of micro-porous poly(ε-caprolactone) scaffolds. Sempertegui ND; Narkhede AA; Thomas V; Rao SS J Biomater Sci Polym Ed; 2018 Nov; 29(16):1978-1993. PubMed ID: 30220215 [TBL] [Abstract][Full Text] [Related]
49. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability. Domingos M; Intranuovo F; Russo T; De Santis R; Gloria A; Ambrosio L; Ciurana J; Bartolo P Biofabrication; 2013 Dec; 5(4):045004. PubMed ID: 24192056 [TBL] [Abstract][Full Text] [Related]
51. Use of lecithin to control fiber morphology in electrospun poly (ɛ-caprolactone) scaffolds for improved tissue engineering applications. Coverdale BDM; Gough JE; Sampson WW; Hoyland JA J Biomed Mater Res A; 2017 Oct; 105(10):2865-2874. PubMed ID: 28608414 [TBL] [Abstract][Full Text] [Related]
52. Hybrid core-shell scaffolds for bone tissue engineering. Kareem MM; Hodgkinson T; Sanchez MS; Dalby MJ; Tanner KE Biomed Mater; 2019 Jan; 14(2):025008. PubMed ID: 30609417 [TBL] [Abstract][Full Text] [Related]
54. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Yao Q; Cosme JG; Xu T; Miszuk JM; Picciani PH; Fong H; Sun H Biomaterials; 2017 Jan; 115():115-127. PubMed ID: 27886552 [TBL] [Abstract][Full Text] [Related]
55. Evaluation of a hydrogel-fiber composite for ACL tissue engineering. Freeman JW; Woods MD; Cromer DA; Ekwueme EC; Andric T; Atiemo EA; Bijoux CH; Laurencin CT J Biomech; 2011 Feb; 44(4):694-9. PubMed ID: 21111422 [TBL] [Abstract][Full Text] [Related]
56. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering. Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211 [TBL] [Abstract][Full Text] [Related]
57. Melt electrospinning of poly(ε-caprolactone) scaffolds: phenomenological observations associated with collection and direct writing. Brown TD; Edin F; Detta N; Skelton AD; Hutmacher DW; Dalton PD Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():698-708. PubMed ID: 25491879 [TBL] [Abstract][Full Text] [Related]
58. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds. Lee SJ; Oh SH; Liu J; Soker S; Atala A; Yoo JJ Biomaterials; 2008 Apr; 29(10):1422-30. PubMed ID: 18096219 [TBL] [Abstract][Full Text] [Related]
59. Fabrication and mechanical characterization of 3D electrospun scaffolds for tissue engineering. Wright LD; Young RT; Andric T; Freeman JW Biomed Mater; 2010 Oct; 5(5):055006. PubMed ID: 20844321 [TBL] [Abstract][Full Text] [Related]
60. Melt Electrospinning Writing of Poly-Hydroxymethylglycolide-co-ε-Caprolactone-Based Scaffolds for Cardiac Tissue Engineering. Castilho M; Feyen D; Flandes-Iparraguirre M; Hochleitner G; Groll J; Doevendans PAF; Vermonden T; Ito K; Sluijter JPG; Malda J Adv Healthc Mater; 2017 Sep; 6(18):. PubMed ID: 28699224 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]