These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 30844782)
61. Influence of cement compressive strength and porosity on augmentation performance in a model of orthopedic screw pull-out. Pujari-Palmer M; Robo C; Persson C; Procter P; Engqvist H J Mech Behav Biomed Mater; 2018 Jan; 77():624-633. PubMed ID: 29100205 [TBL] [Abstract][Full Text] [Related]
62. Development of Portland cement for orthopedic applications, establishing injectability and decreasing setting times. Wynn-Jones G; Shelton RM; Hofmann MP J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2213-21. PubMed ID: 22887643 [TBL] [Abstract][Full Text] [Related]
63. Tricalcium silicate cements with resins and alternative radiopacifiers. Camilleri J J Endod; 2014 Dec; 40(12):2030-5. PubMed ID: 25282375 [TBL] [Abstract][Full Text] [Related]
64. A hybrid zinc-calcium-silicate polyalkenoate bone cement. Xie D; Feng D; Chung ID; Eberhardt AW Biomaterials; 2003 Jul; 24(16):2749-57. PubMed ID: 12711521 [TBL] [Abstract][Full Text] [Related]
65. The self-setting properties and in vitro bioactivity of tricalcium silicate. Zhao W; Wang J; Zhai W; Wang Z; Chang J Biomaterials; 2005 Nov; 26(31):6113-21. PubMed ID: 15927252 [TBL] [Abstract][Full Text] [Related]
66. Preparation and in vivo evaluation of a silicate-based composite bone cement. Ma B; Huan Z; Xu C; Ma N; Zhu H; Zhong J; Chang J J Biomater Appl; 2017 Aug; 32(2):257-264. PubMed ID: 28622750 [TBL] [Abstract][Full Text] [Related]
67. Bioinspired multifunctional biomaterials with hierarchical microstructure for wound dressing. Xue J; Wang X; Wang E; Li T; Chang J; Wu C Acta Biomater; 2019 Dec; 100():270-279. PubMed ID: 31606532 [TBL] [Abstract][Full Text] [Related]
68. Physical, mechanical and in vitro evaluation of a novel cement based on akermantite and dicalcium phosphate dihydrate phase. Sopcak T; Medvecky L; Giretova M; Stulajterova R; Molcanova Z; Podobova M; Girman V Biomed Mater; 2019 May; 14(4):045011. PubMed ID: 31134897 [TBL] [Abstract][Full Text] [Related]
69. Preparation and mechanical properties of graphene oxide: cement nanocomposites. Babak F; Abolfazl H; Alimorad R; Parviz G ScientificWorldJournal; 2014; 2014():276323. PubMed ID: 24574878 [TBL] [Abstract][Full Text] [Related]
70. Bioactive tricalcium silicate/alginate composite bone cements with enhanced physicochemical properties. Xu C; Wang X; Zhou J; Huan Z; Chang J J Biomed Mater Res B Appl Biomater; 2018 Jan; 106(1):237-244. PubMed ID: 28130889 [TBL] [Abstract][Full Text] [Related]
71. Bioactivity and fluoride release of strontium and fluoride modified Biodentine. Simila HO; Karpukhina N; Hill RG Dent Mater; 2018 Jan; 34(1):e1-e7. PubMed ID: 29042078 [TBL] [Abstract][Full Text] [Related]
72. Physicochemical properties of calcium silicate cements for endodontic treatment. Chen CC; Ho CC; David Chen CH; Ding SJ J Endod; 2009 Sep; 35(9):1288-91. PubMed ID: 19720233 [TBL] [Abstract][Full Text] [Related]
73. Dentin remineralizing ability and enhanced antibacterial activity of strontium and hydroxyl ion co-releasing radiopaque hydroxyapatite cement. Jayasree R; Kumar TSS; Mahalaxmi S; Abburi S; Rubaiya Y; Doble M J Mater Sci Mater Med; 2017 Jun; 28(6):95. PubMed ID: 28502026 [TBL] [Abstract][Full Text] [Related]
74. Innovative root-end filling materials based on calcium-silicates and calcium-phosphates. Abedi-Amin A; Luzi A; Giovarruscio M; Paolone G; Darvizeh A; Agulló VV; Sauro S J Mater Sci Mater Med; 2017 Feb; 28(2):31. PubMed ID: 28108959 [TBL] [Abstract][Full Text] [Related]
75. Enhanced apatite-forming ability and antibacterial activity of porous anodic alumina embedded with CaO-SiO2-Ag2O bioactive materials. Ni S; Li X; Yang P; Ni S; Hong F; Webster TJ Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():700-8. PubMed ID: 26478362 [TBL] [Abstract][Full Text] [Related]
76. Improved cytocompatibility and antibacterial properties of zinc-substituted brushite bone cement based on β-tricalcium phosphate. Fadeeva IV; Goldberg MA; Preobrazhensky II; Mamin GV; Davidova GA; Agafonova NV; Fosca M; Russo F; Barinov SM; Cavalu S; Rau JV J Mater Sci Mater Med; 2021 Aug; 32(9):99. PubMed ID: 34406523 [TBL] [Abstract][Full Text] [Related]
77. Mesoporous calcium silicate for controlled release of bovine serum albumin protein. Xue W; Bandyopadhyay A; Bose S Acta Biomater; 2009 Jun; 5(5):1686-96. PubMed ID: 19249262 [TBL] [Abstract][Full Text] [Related]
78. Development of calcium silicate/calcium phosphate cement for bone regeneration. Guo H; Wei J; Yuan Y; Liu C Biomed Mater; 2007 Sep; 2(3):S153-9. PubMed ID: 18458461 [TBL] [Abstract][Full Text] [Related]
79. A novel controlled-release system for antibacterial enzyme lysostaphin delivery using hydroxyapatite/chitosan composite bone cement. Xue B; Zhang C; Wang Y; Wang J; Zhang J; Lu M; Li G; Cao Z; Huang Q PLoS One; 2014; 9(12):e113797. PubMed ID: 25464506 [TBL] [Abstract][Full Text] [Related]
80. Synergistic acceleration in the osteogenic and angiogenic differentiation of human mesenchymal stem cells by calcium silicate-graphene composites. Shie MY; Chiang WH; Chen IP; Liu WY; Chen YW Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():726-735. PubMed ID: 28183667 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]