BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 3084480)

  • 1. Temperature sensitivity and substrate specificity of two distinct Na+-activated D-glucose transport systems in guinea pig jejunal brush border membrane vesicles.
    Brot-Laroche E; Serrano MA; Delhomme B; Alvarado F
    J Biol Chem; 1986 May; 261(14):6168-76. PubMed ID: 3084480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different temperature sensitivity and cation specificity of two distinct D-glucose/Na+ cotransport systems in the intestinal brush-border membrane.
    Brot-Laroche E; Serrano MA; Delhomme B; Alvarado F
    Ann N Y Acad Sci; 1985; 456():47-50. PubMed ID: 3867313
    [No Abstract]   [Full Text] [Related]  

  • 3. Ontogeny of Na+/D-glucose cotransport in guinea-pig jejunal vesicles: only one system is involved at both 20 degrees C and 35 degrees C.
    Malo C
    Biochim Biophys Acta; 1993 Dec; 1153(2):299-307. PubMed ID: 8274501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the multiplicity of sugar transport systems in guinea pig jejunum.
    Lostao MP; Berjón A; Barber A; Ponz F
    Rev Esp Fisiol; 1992 Mar; 48(1):45-50. PubMed ID: 1410768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the D-glucose/Na+ cotransport system in the intestinal brush-border membrane by using the specific substrate, methyl alpha-D-glucopyranoside.
    Brot-Laroche E; Supplisson S; Delhomme B; Alcalde AI; Alvarado F
    Biochim Biophys Acta; 1987 Nov; 904(1):71-80. PubMed ID: 3663668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the multiplicity of glucose analogues transport systems in rat intestine.
    Lostao MP; Berjón A; Barber A; Ponz F
    Rev Esp Fisiol; 1991 Dec; 47(4):209-16. PubMed ID: 1812543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allosterism and Na(+)-D-glucose cotransport kinetics in rabbit jejunal vesicles: compatibility with mixed positive and negative cooperativities in a homo- dimeric or tetrameric structure and experimental evidence for only one transport protein involved.
    Chenu C; Berteloot A
    J Membr Biol; 1993 Mar; 132(2):95-113. PubMed ID: 8496949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Independent modulation by food supply of two distinct sodium-activated D-glucose transport systems in the guinea pig jejunal brush-border membrane.
    Brot-Laroche E; Dao MT; Alcalde AI; Delhomme B; Triadou N; Alvarado F
    Proc Natl Acad Sci U S A; 1988 Sep; 85(17):6370-3. PubMed ID: 3413102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneity of L-alanine transport systems in brush-border membrane vesicles from rat placenta during late gestation.
    Alonso-Torre SR; Serrano MA; Medina JM; Alvarado F
    Biochem J; 1992 Nov; 288 ( Pt 1)(Pt 1):47-53. PubMed ID: 1445280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic characterization of apical D-fructose transport in chicken jejunum.
    Garriga C; Barfull A; Planas JM
    J Membr Biol; 2004 Jan; 197(1):71-6. PubMed ID: 15014919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na(+)-D-glucose cotransport by intestinal BBMVs of the Antarctic fish Trematomus bernacchii.
    Maffia M; Acierno R; Cillo E; Storelli C
    Am J Physiol; 1996 Dec; 271(6 Pt 2):R1576-83. PubMed ID: 8997355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of kinetic data in transport studies: new insights from kinetic studies of Na(+)-D-glucose cotransport in human intestinal brush-border membrane vesicles using a fast sampling, rapid filtration apparatus.
    Malo C; Berteloot A
    J Membr Biol; 1991 Jun; 122(2):127-41. PubMed ID: 1895338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A D-mannose transport system in renal brush-border membranes.
    Mendelssohn DC; Silverman M
    Am J Physiol; 1989 Dec; 257(6 Pt 2):F1100-7. PubMed ID: 2603956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of sodium D-glucose cotransport in bovine intestinal brush border vesicles.
    Kaunitz JD; Wright EM
    J Membr Biol; 1984; 79(1):41-51. PubMed ID: 6737463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of two distinct Na+/D-glucose cotransport systems in the human fetal jejunum by means of their differential specificity for 3-O-methylglucose.
    Malo C
    Biochim Biophys Acta; 1990 Feb; 1022(1):8-16. PubMed ID: 2302406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na(+)-dependent transport of D-xylose by bovine intestinal brush border membrane vesicles (BBMV) is inhibited by various pentoses and hexoses.
    Scharrer E; Grenacher B
    J Vet Med A Physiol Pathol Clin Med; 2000 Dec; 47(10):617-26. PubMed ID: 11199210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of glutamine transport in dog jejunal brush-border membrane vesicles.
    Bulus NM; Abumrad NN; Ghishan FK
    Am J Physiol; 1989 Jul; 257(1 Pt 1):G80-5. PubMed ID: 2750912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Na+-dependent D-mannose transporter in the apical membrane of chicken small intestine epithelial cells.
    Cano M; Calonge ML; Peral MJ; Ilundáin AA
    Pflugers Arch; 2001 Feb; 441(5):686-91. PubMed ID: 11294251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of actin in EGF-induced alterations in enterocyte SGLT1 expression.
    Chung BM; Wong JK; Hardin JA; Gall DG
    Am J Physiol; 1999 Feb; 276(2):G463-9. PubMed ID: 9950820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na+-gradient-dependent transport of L-proline and analysis of its carrier system in brush-border membrane vesicles of the guinea-pig ileum.
    Hayashi K; Yamamoto SI; Ohe K; Miyoshi A; Kawasaki T
    Biochim Biophys Acta; 1980 Oct; 601(3):654-63. PubMed ID: 7417443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.