BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

566 related articles for article (PubMed ID: 3084497)

  • 61. Species-specific differences in chaperone interaction of human and mouse major histocompatibility complex class I molecules.
    Nössner E; Parham P
    J Exp Med; 1995 Jan; 181(1):327-37. PubMed ID: 7807012
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Intracellular dissociation and reassembly of prolyl 4-hydroxylase:the alpha-subunits associated with the immunoglobulin-heavy-chain binding protein (BiP) allowing reassembly with the beta-subunit.
    John DC; Bulleid NJ
    Biochem J; 1996 Aug; 317 ( Pt 3)(Pt 3):659-65. PubMed ID: 8760347
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Coordination of immunoglobulin chain folding and immunoglobulin chain assembly is essential for the formation of functional IgG.
    Kaloff CR; Haas IG
    Immunity; 1995 Jun; 2(6):629-37. PubMed ID: 7796296
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Immunoglobulin light chains dictate vesicular transport-dependent and -independent routes for IgM degradation by the ubiquitin-proteasome pathway.
    Elkabetz Y; Kerem A; Tencer L; Winitz D; Kopito RR; Bar-Nun S
    J Biol Chem; 2003 May; 278(21):18922-9. PubMed ID: 12754269
    [TBL] [Abstract][Full Text] [Related]  

  • 65. ERdj3, a stress-inducible endoplasmic reticulum DnaJ homologue, serves as a cofactor for BiP's interactions with unfolded substrates.
    Shen Y; Hendershot LM
    Mol Biol Cell; 2005 Jan; 16(1):40-50. PubMed ID: 15525676
    [TBL] [Abstract][Full Text] [Related]  

  • 66. [Selective interaction of immunoglobulin polypeptide chains. Quantitative evaluation of the idiotypic and antigen binding activity of reassociated immunoglobulin molecules].
    Ibragimov AR; Shliapnikov SV; Maĭsurian NA; Arsen'eva EL; Bogacheva GT
    Mol Biol (Mosk); 1987; 21(1):54-61. PubMed ID: 3106788
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Confirmation of the assignment of genes of human immunoglobulin heavy chains to chromosome 14 by analysis of Ig synthesis by man-mouse hybridomas.
    Smith M; Krinsky A; Arredondo-Vega F; Wang AL; Hirschhorn K
    Eur J Immunol; 1981 Oct; 11(10):852-5. PubMed ID: 6796425
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Degradation of a short-lived glycoprotein from the lumen of the endoplasmic reticulum: the role of N-linked glycans and the unfolded protein response.
    de Virgilio M; Kitzmüller C; Schwaiger E; Klein M; Kreibich G; Ivessa NE
    Mol Biol Cell; 1999 Dec; 10(12):4059-73. PubMed ID: 10588643
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Evidence that the putative COOH-terminal signal transamidase involved in glycosylphosphatidylinositol protein synthesis is present in the endoplasmic reticulum.
    Amthauer R; Kodukula K; Gerber L; Udenfriend S
    Proc Natl Acad Sci U S A; 1993 May; 90(9):3973-7. PubMed ID: 8387204
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Inhibition of immunoglobulin folding and secretion by dominant negative BiP ATPase mutants.
    Hendershot L; Wei J; Gaut J; Melnick J; Aviel S; Argon Y
    Proc Natl Acad Sci U S A; 1996 May; 93(11):5269-74. PubMed ID: 8643565
    [TBL] [Abstract][Full Text] [Related]  

  • 71. ADP-ribosylation of the molecular chaperone GRP78/BiP.
    Ledford BE; Leno GH
    Mol Cell Biochem; 1994 Sep; 138(1-2):141-8. PubMed ID: 7898457
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Lymphoid cell lines from patients with "non-secretory" agammaglobulinemia produce glycosylated heavy chains which are reduced in molecular weight.
    Schwaber J; Rosen FS
    J Mol Cell Immunol; 1984; 1(5):279-91. PubMed ID: 6443854
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Mutagenesis of a potential immunoglobulin-binding protein-binding site enhances secretion of coagulation factor VIII.
    Swaroop M; Moussalli M; Pipe SW; Kaufman RJ
    J Biol Chem; 1997 Sep; 272(39):24121-4. PubMed ID: 9305856
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Localization of a cyclopentenone prostaglandin to the endoplasmic reticulum and induction of BiP mRNA.
    Takahashi S; Odani N; Tomokiyo K; Furuta K; Suzuki M; Ichikawa A; Negishi M
    Biochem J; 1998 Oct; 335 ( Pt 1)(Pt 1):35-42. PubMed ID: 9742210
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Differential interaction of molecular chaperones with procollagen I and type IV collagen in corneal endothelial cells.
    Ko MK; Kay EP
    Mol Vis; 2002 Jan; 8():1-9. PubMed ID: 11815750
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Selective and transient association of Sendai virus HN glycoprotein with BiP.
    Roux L
    Virology; 1990 Mar; 175(1):161-6. PubMed ID: 2155507
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Regulating the retention of T-cell receptor alpha chain variants within the endoplasmic reticulum: Ca(2+)-dependent association with BiP.
    Suzuki CK; Bonifacino JS; Lin AY; Davis MM; Klausner RD
    J Cell Biol; 1991 Jul; 114(2):189-205. PubMed ID: 1649196
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Enhanced transcription of the 78,000-dalton glucose-regulated protein (GRP78) gene and association of GRP78 with immunoglobulin light chains in a nonsecreting B-cell myeloma line (NS-1).
    Nakaki T; Deans RJ; Lee AS
    Mol Cell Biol; 1989 May; 9(5):2233-8. PubMed ID: 2501663
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The gene coding for the immunoglobulin heavy chain binding protein BiP (Hsce-70) maps to mouse chromosome 2.
    Haas IG; Simon-Chazottes D; Guénet JL
    Mamm Genome; 1992; 3(11):659-60. PubMed ID: 1450517
    [No Abstract]   [Full Text] [Related]  

  • 80. HLA-B27 in transgenic rats forms disulfide-linked heavy chain oligomers and multimers that bind to the chaperone BiP.
    Tran TM; Satumtira N; Dorris ML; May E; Wang A; Furuta E; Taurog JD
    J Immunol; 2004 Apr; 172(8):5110-9. PubMed ID: 15067095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.