These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30845239)

  • 1. Thermopneumatic suction integrated microfluidic blood analysis system.
    Yang CH; Hsieh YL; Tsou PH; Li BR
    PLoS One; 2019; 14(3):e0208676. PubMed ID: 30845239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano-Interstice Driven Powerless Blood Plasma Extraction in a Membrane Filter Integrated Microfluidic Device.
    Kim J; Yoon J; Byun JY; Kim H; Han S; Kim J; Lee JH; Jo HS; Chung S
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Microfluidic Device for Simultaneous Extraction of Plasma, Red Blood Cells, and On-Chip White Blood Cell Trapping.
    Kuan DH; Wu CC; Su WY; Huang NT
    Sci Rep; 2018 Oct; 8(1):15345. PubMed ID: 30337656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and preparation of centrifugal microfluidic chip integrated with SERS detection for rapid diagnostics.
    Su X; Xu Y; Zhao H; Li S; Chen L
    Talanta; 2019 Mar; 194():903-909. PubMed ID: 30609623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fully integrated distance readout ELISA-Chip for point-of-care testing with sample-in-answer-out capability.
    Liu D; Li X; Zhou J; Liu S; Tian T; Song Y; Zhu Z; Zhou L; Ji T; Yang C
    Biosens Bioelectron; 2017 Oct; 96():332-338. PubMed ID: 28525851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a microfluidic device for cell concentration and blood cell-plasma separation.
    Maria MS; Kumar BS; Chandra TS; Sen AK
    Biomed Microdevices; 2015 Dec; 17(6):115. PubMed ID: 26564448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stand-alone self-powered integrated microfluidic blood analysis system (SIMBAS).
    Dimov IK; Basabe-Desmonts L; Garcia-Cordero JL; Ross BM; Park Y; Ricco AJ; Lee LP
    Lab Chip; 2011 Mar; 11(5):845-50. PubMed ID: 21152509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-powered integrated microfluidic point-of-care low-cost enabling (SIMPLE) chip.
    Yeh EC; Fu CC; Hu L; Thakur R; Feng J; Lee LP
    Sci Adv; 2017 Mar; 3(3):e1501645. PubMed ID: 28345028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical hematocrit determination in a direct current microfluidic device.
    Lee HY; Barber C; Rogers JA; Minerick AR
    Electrophoresis; 2015 Apr; 36(7-8):978-85. PubMed ID: 25640582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Point-of-care testing of plasma free hemoglobin and hematocrit for mechanical circulatory support.
    Shin DA; Lee JC; Shin H; Cho YJ; Kim HC
    Sci Rep; 2021 Feb; 11(1):3788. PubMed ID: 33589647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coagulation measurement from whole blood using vibrating optical fiber in a disposable cartridge.
    Yaraş YS; Gündüz AB; Sağlam G; Ölçer S; Civitçi F; Baris İ; Yaralioğlu G; Urey H
    J Biomed Opt; 2017 Nov; 22(11):1-8. PubMed ID: 29127692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extraction of Cell-Free Whole Blood Plasma Using a Dielectrophoresis-Based Microfluidic Device.
    Yang F; Zhang Y; Cui X; Fan Y; Xue Y; Miao H; Li G
    Biotechnol J; 2019 Mar; 14(3):e1800181. PubMed ID: 29952079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic device to separate high-quality plasma from undiluted whole blood sample using an enhanced gravitational sedimentation mechanism.
    Bakhtiaridoost S; Habibiyan H; Ghafoorifard H
    Anal Chim Acta; 2023 Jan; 1239():340641. PubMed ID: 36628743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A physiometer for simultaneous measurement of whole blood viscosity and its determinants: hematocrit and red blood cell deformability.
    Kim BJ; Lee YS; Zhbanov A; Yang S
    Analyst; 2019 Apr; 144(9):3144-3157. PubMed ID: 30942211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient separation of tumor cells from untreated whole blood using a novel multistage hydrodynamic focusing microfluidics.
    Gao R; Cheng L; Wang S; Bi X; Wang X; Wang R; Chen X; Zha Z; Wang F; Xu X; Zhao G; Yu L
    Talanta; 2020 Jan; 207():120261. PubMed ID: 31594567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Microporous Hollow Fiber Membrane Microfluidic Device Integrated with Selective Separation and Capillary Self-Driven for Point-of-Care Testing.
    Wu H; Ma Z; Wei C; Jiang M; Hong X; Li Y; Chen D; Huang X
    Anal Chem; 2020 May; 92(9):6358-6365. PubMed ID: 32250102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous Separation of White Blood Cells From Whole Blood Using Viscoelastic Effects.
    Tan JKS; Park SY; Leo HL; Kim S
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1431-1437. PubMed ID: 28981424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capillary flow-driven microfluidic device with wettability gradient and sedimentation effects for blood plasma separation.
    Maria MS; Rakesh PE; Chandra TS; Sen AK
    Sci Rep; 2017 Mar; 7():43457. PubMed ID: 28256564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Innovative Hydrophobic Valve Allows Complex Liquid Manipulations in a Self-Powered Channel-Based Microfluidic Device.
    Dal Dosso F; Tripodi L; Spasic D; Kokalj T; Lammertyn J
    ACS Sens; 2019 Mar; 4(3):694-703. PubMed ID: 30807106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple microfluidic device for the deformability assessment of blood cells in a continuous flow.
    Rodrigues RO; Pinho D; Faustino V; Lima R
    Biomed Microdevices; 2015 Dec; 17(6):108. PubMed ID: 26482154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.