These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 30845367)

  • 1. Evolution of RADIALIS and DIVARICATA gene lineages in flowering plants with an expanded sampling in non-core eudicots.
    Madrigal Y; Alzate JF; González F; Pabón-Mora N
    Am J Bot; 2019 Mar; 106(3):334-351. PubMed ID: 30845367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Duplications and expression of DIVARICATA-like genes in dipsacales.
    Howarth DG; Donoghue MJ
    Mol Biol Evol; 2009 Jun; 26(6):1245-58. PubMed ID: 19289599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution and Expression Patterns of
    Madrigal Y; Alzate JF; Pabón-Mora N
    Front Plant Sci; 2017; 8():9. PubMed ID: 28144250
    [No Abstract]   [Full Text] [Related]  

  • 4. Evolution of Class II TCP genes in perianth bearing Piperales and their contribution to the bilateral calyx in Aristolochia.
    Pabón-Mora N; Madrigal Y; Alzate JF; Ambrose BA; Ferrándiz C; Wanke S; Neinhuis C; González F
    New Phytol; 2020 Oct; 228(2):752-769. PubMed ID: 32491205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome-Wide Identification and Expression Analysis of DIVARICATA- and RADIALIS-Like Genes of the Mediterranean Orchid Orchis italica.
    Valoroso MC; De Paolo S; Iazzetti G; Aceto S
    Genome Biol Evol; 2017 Jun; 9(6):. PubMed ID: 28541415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of CYCLOIDEA-like genes in Proteaceae, a basal eudicot family with multiple shifts in floral symmetry.
    Citerne HL; Reyes E; Le Guilloux M; Delannoy E; Simonnet F; Sauquet H; Weston PH; Nadot S; Damerval C
    Ann Bot; 2017 Feb; 119(3):367-378. PubMed ID: 28025288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of the
    Zumajo-Cardona C; Ambrose BA; Pabón-Mora N
    Evodevo; 2017; 8():5. PubMed ID: 28331573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep into the Aristolochia Flower: Expression of C, D, and E-Class Genes in Aristolochia fimbriata (Aristolochiaceae).
    Suárez-Baron H; Pérez-Mesa P; Ambrose BA; González F; Pabón-Mora N
    J Exp Zool B Mol Dev Evol; 2017 Jan; 328(1-2):55-71. PubMed ID: 27507740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of CYCLOIDEA-like genes in Fabales: Insights into duplication patterns and the control of floral symmetry.
    Zhao Z; Hu J; Chen S; Luo Z; Luo D; Wen J; Tu T; Zhang D
    Mol Phylogenet Evol; 2019 Mar; 132():81-89. PubMed ID: 30508631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flower Development and Perianth Identity Candidate Genes in the Basal Angiosperm Aristolochia fimbriata (Piperales: Aristolochiaceae).
    Pabón-Mora N; Suárez-Baron H; Ambrose BA; González F
    Front Plant Sci; 2015; 6():1095. PubMed ID: 26697047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stepwise evolution of corolla symmetry in CYCLOIDEA2-like and RADIALIS-like gene expression patterns in Lamiales.
    Zhong J; Kellogg EA
    Am J Bot; 2015 Aug; 102(8):1260-7. PubMed ID: 26290549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gradual disintegration of the floral symmetry gene network is implicated in the evolution of a wind-pollination syndrome.
    Preston JC; Martinez CC; Hileman LC
    Proc Natl Acad Sci U S A; 2011 Feb; 108(6):2343-8. PubMed ID: 21282634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 'Living stones' reveal alternative petal identity programs within the core eudicots.
    Brockington SF; Rudall PJ; Frohlich MW; Oppenheimer DG; Soltis PS; Soltis DE
    Plant J; 2012 Jan; 69(2):193-203. PubMed ID: 21951031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity and evolution of CYCLOIDEA-like TCP genes in relation to flower development in Papaveraceae.
    Damerval C; Le Guilloux M; Jager M; Charon C
    Plant Physiol; 2007 Feb; 143(2):759-72. PubMed ID: 17189327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution and expression of the MADS-box flowering transition genes AGAMOUS-like 24/SHORT VEGETATIVE PHASE with emphasis in selected Neotropical orchids.
    Ramírez-Ramírez JA; Madrigal Y; Alzate JF; Pabón-Mora N
    Cells Dev; 2021 Dec; 168():203755. PubMed ID: 34758403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into angiosperm evolution, floral development and chemical biosynthesis from the Aristolochia fimbriata genome.
    Qin L; Hu Y; Wang J; Wang X; Zhao R; Shan H; Li K; Xu P; Wu H; Yan X; Liu L; Yi X; Wanke S; Bowers JE; Leebens-Mack JH; dePamphilis CW; Soltis PS; Soltis DE; Kong H; Jiao Y
    Nat Plants; 2021 Sep; 7(9):1239-1253. PubMed ID: 34475528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conservation and diversification of the symmetry developmental program among close relatives of snapdragon with divergent floral morphologies.
    Preston JC; Kost MA; Hileman LC
    New Phytol; 2009; 182(3):751-762. PubMed ID: 19291006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radial or Bilateral? The Molecular Basis of Floral Symmetry.
    Lucibelli F; Valoroso MC; Aceto S
    Genes (Basel); 2020 Apr; 11(4):. PubMed ID: 32268578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different outcomes for the MYB floral symmetry genes DIVARICATA and RADIALIS during the evolution of derived actinomorphy in Plantago.
    Reardon W; Gallagher P; Nolan KM; Wright H; Cardeñosa-Rubio MC; Bragalini C; Lee CS; Fitzpatrick DA; Corcoran K; Wolff K; Nugent JM
    New Phytol; 2014 Apr; 202(2):716-725. PubMed ID: 24460533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene Duplication and Differential Expression of Flower Symmetry Genes in
    Ramage E; Soza VL; Yi J; Deal H; Chudgar V; Hall BD; Di Stilio VS
    Plants (Basel); 2021 Sep; 10(10):. PubMed ID: 34685803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.