These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 30845655)

  • 1. Optimization of the Split-Spinach Aptamer for Monitoring Nanoparticle Assembly Involving Multiple Contiguous RNAs.
    O'Hara JM; Marashi D; Morton S; Jaeger L; Grabow WW
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30845655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent monitoring of RNA assembly and processing using the split-spinach aptamer.
    Rogers TA; Andrews GE; Jaeger L; Grabow WW
    ACS Synth Biol; 2015 Feb; 4(2):162-6. PubMed ID: 24932527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of human immunodeficiency virus RNAs in living cells using Spinach RNA aptamers.
    Burch BD; Garrido C; Margolis DM
    Virus Res; 2017 Jan; 228():141-146. PubMed ID: 27914932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Fluorescent Split Aptamer for Visualizing RNA-RNA Assembly In Vivo.
    Alam KK; Tawiah KD; Lichte MF; Porciani D; Burke DH
    ACS Synth Biol; 2017 Sep; 6(9):1710-1721. PubMed ID: 28548488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA signal amplifier circuit with integrated fluorescence output.
    Akter F; Yokobayashi Y
    ACS Synth Biol; 2015 May; 4(5):655-8. PubMed ID: 25354355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Split Spinach Aptamer for Highly Selective Recognition of DNA and RNA at Ambient Temperatures.
    Kikuchi N; Kolpashchikov DM
    Chembiochem; 2016 Sep; 17(17):1589-92. PubMed ID: 27305425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. mRNA imaging in the chloroplast of Chlamydomonas reinhardtii using the light-up aptamer Spinach.
    Guzmán-Zapata D; Domínguez-Anaya Y; Macedo-Osorio KS; Tovar-Aguilar A; Castrejón-Flores JL; Durán-Figueroa NV; Badillo-Corona JA
    J Biotechnol; 2017 Jun; 251():186-188. PubMed ID: 28359866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinach-based RNA mimicking GFP in plant cells.
    Yu Z; Wang Y; Mei F; Yan H; Jin Z; Zhang P; Zhang X; Tör M; Jackson S; Shi N; Hong Y
    Funct Integr Genomics; 2022 Jun; 22(3):423-428. PubMed ID: 35267109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorophore ligand binding and complex stabilization of the RNA Mango and RNA Spinach aptamers.
    Jeng SC; Chan HH; Booy EP; McKenna SA; Unrau PJ
    RNA; 2016 Dec; 22(12):1884-1892. PubMed ID: 27777365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitive monitoring of RNA transcription by optical amplification of cationic conjugated polymers.
    Li Z; Guo H; Xu F; Tang W; Duan X
    Talanta; 2019 Oct; 203():314-321. PubMed ID: 31202345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo production of RNA nanostructures via programmed folding of single-stranded RNAs.
    Li M; Zheng M; Wu S; Tian C; Liu D; Weizmann Y; Jiang W; Wang G; Mao C
    Nat Commun; 2018 Jun; 9(1):2196. PubMed ID: 29875441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, synthesis, and application of Spinach molecular beacons triggered by strand displacement.
    Bhadra S; Ellington AD
    Methods Enzymol; 2015; 550():215-49. PubMed ID: 25605388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SRB-2: a promiscuous rainbow aptamer for live-cell RNA imaging.
    Sunbul M; Jäschke A
    Nucleic Acids Res; 2018 Oct; 46(18):e110. PubMed ID: 29931157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure and fluorescence properties of the iSpinach aptamer in complex with DFHBI.
    Fernandez-Millan P; Autour A; Ennifar E; Westhof E; Ryckelynck M
    RNA; 2017 Dec; 23(12):1788-1795. PubMed ID: 28939697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theophylline detection in serum using a self-assembling RNA aptamer-based gold nanoparticle sensor.
    Jiang H; Ling K; Tao X; Zhang Q
    Biosens Bioelectron; 2015 Aug; 70():299-303. PubMed ID: 25840014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A self-assembling split aptamer multiplex assay for SARS-COVID19 and miniaturization of a malachite green DNA-based aptamer.
    R O'Steen M; M Kolpashchikov D
    Sens Actuators Rep; 2022 Nov; 4():100125. PubMed ID: 36373144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic colloidal nanoparticle assembly triggered by aptamer-receptor interactions on live cell membranes.
    Yang L; Meng L; Song J; Xiao Y; Wang R; Kang H; Han D
    Chem Sci; 2019 Aug; 10(31):7466-7471. PubMed ID: 31489169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of Baby Spinach and Broccoli for imaging of structured cellular RNAs.
    Okuda M; Fourmy D; Yoshizawa S
    Nucleic Acids Res; 2017 Feb; 45(3):1404-1415. PubMed ID: 28180326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A replication cycle for viroids and other small infectious RNA's.
    Branch AD; Robertson HD
    Science; 1984 Feb; 223(4635):450-5. PubMed ID: 6197756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational Design of Small Molecules Targeting Oncogenic Noncoding RNAs from Sequence.
    Disney MD; Angelbello AJ
    Acc Chem Res; 2016 Dec; 49(12):2698-2704. PubMed ID: 27993012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.