These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30845744)

  • 1. Aggregates Obtained by Alkali Activation of Fly Ash: The Effect of Granulation, Pelletization Methods and Curing Regimes.
    Rudić O; Ducman V; Malešev M; Radonjanin V; Draganić S; Šupić S; Radeka M
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30845744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Fly Ash Inclusion and Alkali Activation on Physical, Mechanical, and Chemical Properties of Clay.
    Turan C; Javadi AA; Vinai R; Russo G
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactivity and Microstructure of Metakaolin Based Geopolymers: Effect of Fly Ash and Liquid/Solid Contents.
    Vogt O; Ukrainczyk N; Ballschmiede C; Koenders E
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31653060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkali-Activated Binary Binders with Carbonate-Rich Illitic Clay.
    D'Elia A; Clausi M; Fernández-Jiménez A; Palomo A; Eramo G; Laviano R; Pinto D
    Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash.
    Kalaw ME; Culaba A; Hinode H; Kurniawan W; Gallardo S; Promentilla MA
    Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of Alkali-Carbonate Reaction by Fly Ash and Metakaolin on Dolomitic Limestones.
    Cao H; Mao Z; Huang X; Deng M
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental and Biological Impact of Fly Ash and Metakaolin-Based Alkali-Activated Foams Obtained at 70°C and Fired at 1,000°C.
    Leonelli C; Turk J; Poggetto GD; Catauro M; Traven K; Mauko Pranjić A; Ducman V
    Front Chem; 2022; 10():845452. PubMed ID: 35355789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Potential of Ladle Slag and Electric Arc Furnace Slag use in Synthesizing Alkali Activated Materials; the Influence of Curing on Mechanical Properties.
    Češnovar M; Traven K; Horvat B; Ducman V
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30974853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recycling of MSWI fly ash by means of cementitious double step cold bonding pelletization: Technological assessment for the production of lightweight artificial aggregates.
    Colangelo F; Messina F; Cioffi R
    J Hazard Mater; 2015 Dec; 299():181-91. PubMed ID: 26124064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Characterization of Fixation of Ba, Pb, and Cu in Alkali-Activated Fly Ash/Blast Furnace Slag Matrix.
    Koplík J; Kalina L; Másilko J; Šoukal F
    Materials (Basel); 2016 Jun; 9(7):. PubMed ID: 28773655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of Waste Glass as an Activator in Class-C Fly Ash/GGBS Based Alkali Activated Material.
    Sasui S; Kim G; Nam J; van Riessen A; Eu H; Chansomsak S; Alam SF; Cho CH
    Materials (Basel); 2020 Sep; 13(17):. PubMed ID: 32899399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Heat Curing Method on the Mechanical Strength of Alkali-Activated Slag Mortar after High-Temperature Exposure.
    Tran TT; Kang H; Kwon HM
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31159501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on the Compressive Strength of Alkali Activated Fly Ash and Slag under the Different Silicate Structure.
    Wang Z; Rehemituli R; Zhang X
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33925998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Effects of Various Concentrations of NaOH on the Inter-Particle Gelation of a Fly Ash Geopolymer Aggregate.
    Abdullah A; Hussin K; Abdullah MMAB; Yahya Z; Sochacki W; Razak RA; Błoch K; Fansuri H
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33673522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Waste Ceramic Powder on the Properties of Alkali-Activated Slag and Fly Ash Pastes Exposed to High Temperature.
    Zhang GY; Bae SC; Lin RS; Wang XY
    Polymers (Basel); 2021 Nov; 13(21):. PubMed ID: 34771353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Curing Conditions and Precursor on the Microstructure and Phase Chemistry of Alkali-Activated Fly Ash and Slag Pastes.
    Nedeljković M; Ghiassi B; Ye G
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33921339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of Alkali-Activated Municipal Slag Composite Performance by Substituting Varying Ratios of Fly Ash for Fine Aggregate.
    El-Wafa MA; Fukuzawa K
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydration Mechanisms of Alkali-Activated Cementitious Materials with Ternary Solid Waste Composition.
    Yang Z; Zhang D; Fang C; Jiao Y; Kang D; Yan C; Zhang J
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Silica Modulus and Curing Temperature on the Strength of Alkali-Activated Volcanic Ash and Limestone Powder Mortar.
    Adewumi AA; Mohd Ariffin MA; Maslehuddin M; Yusuf MO; Ismail M; Al-Sodani KAA
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and Characterization of the Functional Properties of Synthetic Aggregates from Silico-Manganese Slag.
    Xing Z; Han F; Tian J; Xu Z; Wang J; Liu T; Zheng B; Huang J
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.