BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30846413)

  • 1. Increased expression of GEF-H1 promotes colon cancer progression by RhoA signaling.
    Cao J; Yang T; Tang D; Zhou F; Qian Y; Zou X
    Pathol Res Pract; 2019 May; 215(5):1012-1019. PubMed ID: 30846413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GEF-H1 over-expression in hepatocellular carcinoma promotes cell motility via activation of RhoA signalling.
    Cheng IK; Tsang BC; Lai KP; Ching AK; Chan AW; To KF; Lai PB; Wong N
    J Pathol; 2012 Dec; 228(4):575-85. PubMed ID: 22847784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpressed hPTTG1 promotes breast cancer cell invasion and metastasis by regulating GEF-H1/RhoA signalling.
    Liao YC; Ruan JW; Lua I; Li MH; Chen WL; Wang JR; Kao RH; Chen JH
    Oncogene; 2012 Jun; 31(25):3086-97. PubMed ID: 22002306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guanine nucleotide exchange factor-H1 regulates cell migration via localized activation of RhoA at the leading edge.
    Nalbant P; Chang YC; Birkenfeld J; Chang ZF; Bokoch GM
    Mol Biol Cell; 2009 Sep; 20(18):4070-82. PubMed ID: 19625450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vincristine enhances amoeboid-like motility via GEF-H1/RhoA/ROCK/Myosin light chain signaling in MKN45 cells.
    Eitaki M; Yamamori T; Meike S; Yasui H; Inanami O
    BMC Cancer; 2012 Oct; 12():469. PubMed ID: 23057787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of guanine nucleotide exchange factor-H1 in complement-mediated RhoA activation in glomerular epithelial cells.
    Mouawad F; Aoudjit L; Jiang R; Szaszi K; Takano T
    J Biol Chem; 2014 Feb; 289(7):4206-18. PubMed ID: 24356971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing GEF-H1 Expression Inhibits Renal Cyst Formation, Inflammation, and Fibrosis via RhoA Signaling in Nephronophthisis.
    Hu Q; Lai J; Chen H; Cai Y; Yue Z; Lin H; Sun L
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular signal-regulated kinase regulates RhoA activation and tumor cell plasticity by inhibiting guanine exchange factor H1 activity.
    von Thun A; Preisinger C; Rath O; Schwarz JP; Ward C; Monsefi N; Rodríguez J; Garcia-Munoz A; Birtwistle M; Bienvenut W; Anderson KI; Kolch W; von Kriegsheim A
    Mol Cell Biol; 2013 Nov; 33(22):4526-37. PubMed ID: 24043311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vimentin intermediate filaments control actin stress fiber assembly through GEF-H1 and RhoA.
    Jiu Y; Peränen J; Schaible N; Cheng F; Eriksson JE; Krishnan R; Lappalainen P
    J Cell Sci; 2017 Mar; 130(5):892-902. PubMed ID: 28096473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarity-regulating kinase partitioning-defective 1b (PAR1b) phosphorylates guanine nucleotide exchange factor H1 (GEF-H1) to regulate RhoA-dependent actin cytoskeletal reorganization.
    Yamahashi Y; Saito Y; Murata-Kamiya N; Hatakeyama M
    J Biol Chem; 2011 Dec; 286(52):44576-84. PubMed ID: 22072711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BNIP-2 retards breast cancer cell migration by coupling microtubule-mediated GEF-H1 and RhoA activation.
    Pan M; Chew TW; Wong DCP; Xiao J; Ong HT; Chin JFL; Low BC
    Sci Adv; 2020 Jul; 6(31):eaaz1534. PubMed ID: 32789168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GEF-H1 couples nocodazole-induced microtubule disassembly to cell contractility via RhoA.
    Chang YC; Nalbant P; Birkenfeld J; Chang ZF; Bokoch GM
    Mol Biol Cell; 2008 May; 19(5):2147-53. PubMed ID: 18287519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The RhoA activator GEF-H1/Lfc is a transforming growth factor-beta target gene and effector that regulates alpha-smooth muscle actin expression and cell migration.
    Tsapara A; Luthert P; Greenwood J; Hill CS; Matter K; Balda MS
    Mol Biol Cell; 2010 Mar; 21(6):860-70. PubMed ID: 20089843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GEF-H1-RhoA signaling pathway mediates LPS-induced NF-κB transactivation and IL-8 synthesis in endothelial cells.
    Guo F; Tang J; Zhou Z; Dou Y; Van Lonkhuyzen D; Gao C; Huan J
    Mol Immunol; 2012 Feb; 50(1-2):98-107. PubMed ID: 22226472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal dynamics of GEF-H1 activation controlled by microtubule- and Src-mediated pathways.
    Azoitei ML; Noh J; Marston DJ; Roudot P; Marshall CB; Daugird TA; Lisanza SL; Sandí MJ; Ikura M; Sondek J; Rottapel R; Hahn KM; Danuser G
    J Cell Biol; 2019 Sep; 218(9):3077-3097. PubMed ID: 31420453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Claudin-2 suppresses GEF-H1, RHOA, and MRTF, thereby impacting proliferation and profibrotic phenotype of tubular cells.
    Dan Q; Shi Y; Rabani R; Venugopal S; Xiao J; Anwer S; Ding M; Speight P; Pan W; Alexander RT; Kapus A; Szászi K
    J Biol Chem; 2019 Oct; 294(42):15446-15465. PubMed ID: 31481470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The epidermal growth factor receptor mediates tumor necrosis factor-alpha-induced activation of the ERK/GEF-H1/RhoA pathway in tubular epithelium.
    Kakiashvili E; Dan Q; Vandermeer M; Zhang Y; Waheed F; Pham M; Szászi K
    J Biol Chem; 2011 Mar; 286(11):9268-79. PubMed ID: 21212278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autophagy suppresses cell migration by degrading GEF-H1, a RhoA GEF.
    Yoshida T; Tsujioka M; Honda S; Tanaka M; Shimizu S
    Oncotarget; 2016 Jun; 7(23):34420-9. PubMed ID: 27120804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between the type III effector VopO and GEF-H1 activates the RhoA-ROCK pathway.
    Hiyoshi H; Okada R; Matsuda S; Gotoh K; Akeda Y; Iida T; Kodama T
    PLoS Pathog; 2015 Mar; 11(3):e1004694. PubMed ID: 25738744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The RhoA regulators Myo9b and GEF-H1 are targets of cyclic nucleotide-dependent kinases in platelets.
    Comer S; Nagy Z; Bolado A; von Kriegsheim A; Gambaryan S; Walter U; Pagel O; Zahedi RP; Jurk K; Smolenski A
    J Thromb Haemost; 2020 Nov; 18(11):3002-3012. PubMed ID: 32692911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.